3,928
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural biology of voltage-gated calcium channels

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2290807 | Received 28 Aug 2023, Accepted 27 Nov 2023, Published online: 07 Dec 2023

References

  • Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 2000;16(1):521–19. doi: 10.1146/annurev.cellbio.16.1.521
  • Zamponi GW, Striessnig J, Koschak A, et al. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015 Oct;67(4):821–870. doi: 10.1124/pr.114.009654
  • Tsien RW, Barrett CF. A Brief history of calcium channel discovery. Voltage-gated calcium channels. Boston, MA: Springer US; 2005. pp. 27–47.
  • Dolphin AC. A short history of voltage-gated calcium channels. Br J Pharmacol. 2006 Jan;147(Suppl S1):S56–62. doi: 10.1038/sj.bjp.0706442
  • Ertel EA, Campbell KP, Harpold MM, et al. Nomenclature of voltage-gated calcium channels. Neuron. 2000 Mar;25(3):533–535. doi: 10.1016/S0896-6273(00)81057-0
  • Tanabe T, Takeshima H, Mikami A, et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987 Jul 23-29;328(6128):313–318. doi: 10.1038/328313a0
  • Mikami A, Imoto K, Tanabe T, et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 1989 Jul 20;340(6230):230–233. doi: 10.1038/340230a0
  • Mori Y, Friedrich T, Kim MS, et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature. 1991 Apr 4;350(6317):398–402. doi: 10.1038/350398a0
  • Dubel SJ, Starr TV, Hell J, et al. Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5058–5062. doi: 10.1073/pnas.89.11.5058
  • Soong TW, Stea A, Hodson CD, et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science. 1993 May 21;260(5111):1133–1136. doi: 10.1126/science.8388125
  • Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003 Jan;83(1):117–161. doi: 10.1152/physrev.00018.2002
  • Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984 Aug 9-15;310(5977):501–502. doi: 10.1038/310501a0
  • Iftinca MC, Zamponi GW. Regulation of neuronal T-type calcium channels. Trends Pharmacol Sci. 2009 Jan;30(1):32–40. doi: 10.1016/j.tips.2008.10.004
  • Schroeder CI, Doering CJ, Zamponi GW, et al. N-type calcium channel blockers: novel therapeutics for the treatment of pain. Med Chem. 2006 Sep;2(5):535–543. doi: 10.2174/157340606778250216
  • Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov. 2016 Jan;15(1):19–34. doi: 10.1038/nrd.2015.5
  • Sorkin EM, Clissold SP, Brogden RN. Nifedipine a review of its Pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs. 1985 Sep;30(3):182–274. doi: 10.2165/00003495-198530030-00002
  • Fleckenstein A. History of calcium antagonists. Circ Res. 1983 Feb;52(2 Pt 2):I3–16.
  • Bowersox SS, Luther R. Pharmacotherapeutic potential of omega-conotoxin MVIIA (SNX-111), an N-type neuronal calcium channel blocker found in the venom of conus magus. Toxicon. 1998 Nov;36(11):1651–1658. doi: 10.1016/S0041-0101(98)00158-5
  • Miljanich GP. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem. 2004 Dec;11(23):3029–3040. doi: 10.2174/0929867043363884
  • Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011 Aug 1;3(8):a003947. doi: 10.1101/cshperspect.a003947
  • Tsien RW, Hess P, McCleskey EW, et al. Calcium channels: mechanisms of selectivity, permeation, and block. Ann Rev Biophys Biophys Chem. 1987;16(1):265–290.
  • Corry B, Allen TW, Kuyucak S, et al. Mechanisms of permeation and selectivity in calcium channels. Biophys J. 2001 Jan;80(1):195–214. doi: 10.1016/S0006-3495(01)76007-9
  • Tombola F, Pathak MM, Isacoff EY. How does voltage open an ion channel? Annu Rev Cell Dev Biol. 2006;22(1):23–52. doi: 10.1146/annurev.cellbio.21.020404.145837
  • Buraei Z, Yang J. The ß subunit of voltage-gated Ca2+ channels. Physiol Rev. 2010 Oct;90(4):1461–506. doi: 10.1152/physrev.00057.2009
  • Dolphin AC. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci. 2012 Jul 18;13(8):542–555. doi: 10.1038/nrn3311
  • Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol. 2016 Oct 1;594(19):5369–5390. doi: 10.1113/JP272262
  • Wu J, Yan Z, Li Z, et al. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 Å resolution. Nature. 2016 Sep 8;537(7619):191–196. doi: 10.1038/nature19321
  • Wu J, Yan Z, Li Z, et al. Structure of the voltage-gated calcium channel Cav1.1 complex. Science. 2015 Dec 18;350(6267):aad2395. doi: 10.1126/science.aad2395
  • Davies A, Hendrich J, Van Minh AT, et al. Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci. 2007 May;28(5):220–8. doi: 10.1016/j.tips.2007.03.005
  • De Jongh KS, Warner C, Catterall WA. Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. J Biol Chem. 1990 Sep 5;265(25):14738–14741. doi: 10.1016/S0021-9258(18)77174-3
  • Jay SD, Sharp AH, Kahl SD, et al. Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. J Biol Chem. 1991 Feb 15;266(5):3287–3293. doi: 10.1016/S0021-9258(18)49986-3
  • Davies A, Kadurin I, Alvarez-Laviada A, et al. The α 2 δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1654–9. doi: 10.1073/pnas.0908735107
  • Calderón-Rivera A, Andrade A, Hernández-Hernández O, et al. Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca2+ channel α2δ-1 auxiliary subunit. Cell Calcium. 2012 Jan;51(1):22–30. doi: 10.1016/j.ceca.2011.10.002
  • Lacerda AE, Kim HS, Ruth P, et al. Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature. 1991 Aug 8;352(6335):527–30. doi: 10.1038/352527a0
  • Shistik E, Ivanina T, Puri T, et al. Ca2+ current enhancement by alpha 2/delta and beta subunits in xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. J Physiol. 1995 Nov 15;489(Pt 1):55–62. doi: 10.1113/jphysiol.1995.sp021029
  • Varadi G, Lory P, Schultz D, et al. Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. Nature. 1991 Jul 11;352(6331):159–62. doi: 10.1038/352159a0
  • Josephson IR, Varadi G. The beta subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels. Biophys J. 1996 Mar;70(3):1285–1293. doi: 10.1016/S0006-3495(96)79685-6
  • Neely A, Wei X, Olcese R, et al. Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science. 1993 Oct 22;262(5133):575–8. doi: 10.1126/science.8211185
  • Zhao Y, Huang G, Wu J, et al. Molecular basis for ligand modulation of a Mammalian voltage-gated Ca(2+) channel. Cell. 2019 May 30;177(6):1495–1506 e12. doi: 10.1016/j.cell.2019.04.043
  • Gao S, Yan N. Structural Basis of the Modulation of the Voltage-Gated Calcium Ion Channel Ca(v)1.1 by Dihydropyridine Compounds**. Angew Chem-Int Ed. 2021 Feb;60(6):3131–3137. doi: 10.1002/anie.202011793
  • Yao X, Gao S, Wang J, et al. Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Ca(v) channels. Cell. 2022 Dec 8;185(25):4801–4810.e13. doi: 10.1016/j.cell.2022.10.024
  • Chen Z, Mondal A, Minor DLJr. Structural basis for Ca(V)α(2)δ: gabapentin binding. Nat Struct Mol Biol. 2023 Jun;30(6):735–739. doi: 10.1038/s41594-023-00951-7
  • Chen Z, Mondal A, Abderemane-Ali F, et al. EMC chaperone–CaV structure reveals an ion channel assembly intermediate. Nature. 2023 May 17;619(7969):410–419. doi: 10.1038/s41586-023-06175-5
  • Gao S, Yao X, Chen J, et al. Structural basis for human Ca(v)1.2 inhibition by multiple drugs and the neurotoxin calciseptine. Cell. 2023 Nov 8;186(24):5363–5374.e16. doi: 10.1016/j.cell.2023.10.007
  • Yao X, Gao S, Yan N. Structural basis for pore blockade of human voltage-gated calcium channel Ca(v)1.3 by motion sickness drug cinnarizine. Cell Res. 2022 Oct;32(10):946–948. doi: 10.1038/s41422-022-00663-5
  • Gao S, Yao X, Yan N. Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature. 2021 Aug;596(7870):143–147. doi: 10.1038/s41586-021-03699-6
  • Dong Y, Gao Y, Xu S, et al. Closed-state inactivation and pore-blocker modulation mechanisms of human Ca(V)2.2. Cell Rep. 2021 Nov 2;37(5):109931. doi: 10.1016/j.celrep.2021.109931
  • Yao X, Wang Y, Wang Z, et al. Structures of the R-type human Ca(v)2.3 channel reveal conformational crosstalk of the intracellular segments. Nat Commun. 2022 Nov 30;13(1):7358. doi: 10.1038/s41467-022-35026-6
  • Gao Y, Xu S, Cui X, et al. Molecular insights into the gating mechanisms of voltage-gated calcium channel Ca(V)2.3. Nat Commun. 2023 Jan 31;14(1):516. doi: 10.1038/s41467-023-36260-2
  • Zhao Y, Huang G, Wu Q, et al. Cryo-EM structures of apo and antagonist-bound human Ca(v)3.1. Nature. 2019 Dec;576(7787):492–497. doi: 10.1038/s41586-019-1801-3
  • He L, Yu Z, Geng Z, et al. Structure, gating, and pharmacology of human Ca(V)3.3 channel. Nat Commun. 2022 Apr 19;13(1):2084. doi: 10.1038/s41467-022-29728-0
  • Kozai D, Numoto N, Nishikawa K, et al. Recognition Mechanism of a Novel Gabapentinoid Drug, Mirogabalin, for Recombinant Human alpha(2)delta1, a Voltage-Gated Calcium Channel Subunit. J Mol Biol. 2023 May 15;435(10):168049. doi: 10.1016/j.jmb.2023.168049
  • Curtis BM, Catterall WA. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry. 1984 May 8;23(10):2113–2118. doi: 10.1021/bi00305a001
  • Chang FC, Hosey MM. Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J Biol Chem. 1988 Dec 15;263(35):18929–18937. doi: 10.1016/S0021-9258(18)37371-X
  • Kuniyasu A, Oka K, Ide-Yamada T, et al. Structural characterization of the dihydropyridine receptor-linked calcium channel from porcine heart. J Biochem. 1992 Aug;112(2):235–42. doi: 10.1093/oxfordjournals.jbchem.a123883
  • Schneider T, Hofmann F. The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Eur J Biochem. 1988 Jun 1;174(2):369–375. doi: 10.1111/j.1432-1033.1988.tb14107.x
  • McEnery MW, Snowman AM, Sharp AH, et al. Purified omega-conotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11095–11099. doi: 10.1073/pnas.88.24.11095
  • Witcher DR, De Waard M, Sakamoto J, et al. Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science. 1993 Jul 23;261(5120):486–489. doi: 10.1126/science.8392754
  • Pragnell M, De Waard M, Mori Y, et al. Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature. 1994 Mar 3;368(6466):67–70. doi: 10.1038/368067a0
  • Kang MG, Campbell KP. Gamma subunit of voltage-activated calcium channels. J Biol Chem. 2003 Jun 13;278(24):21315–8. doi: 10.1074/jbc.R300004200
  • Andronache Z, Ursu D, Lehnert S, et al. The auxiliary subunit gamma 1 of the skeletal muscle L-type Ca2+ channel is an endogenous Ca2+ antagonist. Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17885–90. doi: 10.1073/pnas.0704340104
  • Tsien RW. Calcium Signals. IOP Publishing; 2023. Calcium channel selectivity and permeation: function meets 3D structure; 2-1-2–20. doi: 10.1088/978-0-7503-2009-2ch2
  • Hess P, Tsien RW. Mechanism of ion permeation through calcium channels. Nature. 1984 May 31-Jun 6;309(5967):453–6. doi: 10.1038/309453a0
  • Sather WA, McCleskey EW. Permeation and selectivity in calcium channels. Annu Rev Physiol. 2003;65(1):133–159. doi: 10.1146/annurev.physiol.65.092101.142345
  • Kostyuk PG, Mironov SL, Shuba YM. 2 ION-SELECTING FILTERS IN THE CALCIUM-CHANNEL OF THE SOMATIC MEMBRANE OF MOLLUSK NEURONS. J Membrain Biol. 1983;76(1):83–93. Article. doi: 10.1007/BF01871455
  • Ellinor PT, Yang J, Sather WA, et al. Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron. 1995 Nov;15(5):1121–1132. doi: 10.1016/0896-6273(95)90100-0
  • Yang J, Ellinor PT, Sather WA, et al. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature. 1993 Nov 11;366(6451):158–61. doi: 10.1038/366158a0
  • Shuba YM. Models of calcium permeation through T-type channels. Pflugers Arch - Eur J Physiol. 2014 Apr;466(4):635–644. doi: 10.1007/s00424-013-1437-3
  • Patil PG, Brody DL, Yue DT. Preferential closed-state inactivation of neuronal calcium channels. Neuron. 1998 May;20(5):1027–1038. doi: 10.1016/S0896-6273(00)80483-3
  • Hering S, Zangerl-Plessl EM, Beyl S, et al. Calcium channel gating. Pflugers Arch - Eur J Physiol. 2018 Sep;470(9):1291–1309. doi: 10.1007/s00424-018-2163-7
  • Catterall WA, Wisedchaisri G, Zheng N. The chemical basis for electrical signaling. Nat Chem Biol. 2017 Apr 13;13(5):455–463. doi: 10.1038/nchembio.2353
  • Yarov-Yarovoy V, DeCaen PG, Westenbroek RE, et al. Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E93–102. doi: 10.1073/pnas.1118434109
  • Saimi Y, Kung C. Calmodulin as an ion channel subunit. Annu Rev Physiol. 2002;64(1):289–311. doi: 10.1146/annurev.physiol.64.100301.111649
  • Dolphin AC. G protein modulation of voltage-gated calcium channels. Pharmacol Rev. 2003 Dec;55(4):607–627. doi: 10.1124/pr.55.4.3
  • Wu L, Bauer CS, Zhen XG, et al. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature. 2002 Oct 31;419(6910):947–952. doi: 10.1038/nature01118
  • Zamponi GW. Regulation of presynaptic calcium channels by synaptic proteins. J Pharmacol Sci. 2003 Jun;92(2):79–83. doi: 10.1254/jphs.92.79
  • Van Petegem F, Chatelain FC, Minor DL. Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-Ca2+/calmodulin complex. Nat Struct Mol Biol. 2005 Dec;12(12):1108–15. doi: 10.1038/nsmb1027
  • Turner M, Anderson DE, Bartels P, et al. Alpha-actinin-1 promotes activity of the L-type Ca(2+) channel Ca(v) 1.2. EMBO J. 2020 Mar 2;39(5):e102622. doi: 10.15252/embj.2019102622
  • Yang ZF, Panwar P, McFarlane CR, et al. Structures of the junctophilin/voltage-gated calcium channel interface reveal hot spot for cardiomyopathy mutations. Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2120416119. doi: 10.1073/pnas.2120416119
  • King Yuen SM W, Campiglio M, Tung CC, et al. Structural insights into binding of STAC proteins to voltage-gated calcium channels. Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9520–E9528. doi: 10.1073/pnas.1708852114
  • Chen Z, Mondal A, Ali FA, et al. EMC chaperone–CaV structure reveals an ion channel assembly intermediate. Nature. 2023 May 17;619(7969):410–419. doi: 10.1038/s41586-023-06175-5
  • Peterson BZ, DeMaria CD, Adelman JP, et al. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron. 1999 Mar;22(3):549–58. doi: 10.1016/S0896-6273(00)80709-6
  • Meissner G, Lu X. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Biosci Rep. 1995 Oct;15(5):399–408. doi: 10.1007/BF01788371
  • Takeshima H, Iino M, Takekura H, et al. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature. 1994 Jun 16;369(6481):556–9. doi: 10.1038/369556a0
  • Gamper N, Reznikov V, Yamada Y, et al. Phosphatidylinositol [correction] 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci. 2004 Dec 1;24(48):10980–92. doi: 10.1523/JNEUROSCI.3869-04.2004
  • Wu X, Kushwaha N, Albert PR, et al. A critical protein kinase C phosphorylation site on the 5-HT(1A) receptor controlling coupling to N-type calcium channels. J Physiol. 2002 Jan 1;538(Pt 1):41–51. doi: 10.1113/jphysiol.2001.012668
  • Deutsch C. (2003). The Birth of a Channel. Neuron, 40(2), 265–276. 10.1016/S0896-6273(03)00506-3
  • Hegde R S. (2022). The Function, Structure, and Origins of the ER Membrane Protein Complex. Annu. Rev. Biochem., 91(1), 651–678. 10.1146/annurev-biochem-032620-104553
  • O'Donnell J P, Phillips B P, Yagita Y, Juszkiewicz S, Wagner A, Malinverni D, Keenan R J, Miller E A and Hegde R S. (2020). The architecture of EMC reveals a path for membrane protein insertion. eLife, 9 10.7554/eLife.57887
  • Pleiner T, Tomaleri G Pinton, Januszyk K, Inglis A J, Hazu M and Voorhees R M. (2020). Structural basis for membrane insertion by the human ER membrane protein complex. Science, 369(6502), 433–436. 10.1126/science.abb5008
  • Miller-Vedam L E et al . (2020). Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. eLife, 9 10.7554/eLife.62611
  • Kiowski W, Erne P, Bühler FR. Use of nifedipine in hypertension and Raynaud’s phenomenon. Cardiovasc Drugs Ther. 1990 Aug;4(5):935–40. doi: 10.1007/BF02018296
  • Hockerman GH, Peterson BZ, Johnson BD, et al. Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol. 1997;37(1):361–396.
  • Langs DA, Strong PD, Triggle DJ. Receptor model for the molecular basis of tissue selectivity of 1, 4-dihydropyridine calcium channel drugs. J Comput Aided Mol Des. 1990 Sep;4(3):215–230. doi: 10.1007/BF00125011
  • Langs DA, Kwon YW, Strong PD, et al. Molecular level model for the agonist/antagonist selectivity of the 1,4-dihydropyridine calcium channel receptor. J Comput Aided Mol Des. 1991 Apr;5(2):95–106. doi: 10.1007/BF00129749
  • Mitterdorfer J, Wang Z, Sinnegger MJ, et al. Two amino acid residues in the IIIS5 segment of L-type calcium channels differentially contribute to 1,4-dihydropyridine sensitivity. J Biol Chem. 1996 Nov 29;271(48):30330–30335. doi: 10.1074/jbc.271.48.30330
  • Yamaguchi S, Okamura Y, Nagao T, et al. Serine residue in the IIIS5-S6 linker of the L-type Ca2+ channel alpha 1C subunit is the critical determinant of the action of dihydropyridine Ca2+ channel agonists. J Biol Chem. 2000 Dec 29;275(52):41504–11. doi: 10.1074/jbc.M007165200
  • Kass RS, Arena JP. Influence of pHo on calcium channel block by amlodipine, a charged dihydropyridine compound. Implications for location of the dihydropyridine receptor. J Gen Physiol. 1989 Jun;93(6):1109–1127. doi: 10.1085/jgp.93.6.1109
  • Döring F, Degtiar VE, Grabner M, et al. Transfer of L-type calcium channel IVS6 segment increases phenylalkylamine sensitivity of α1A(*). J Biol Chem. 1996 05 17;271(20):11745–11749. doi: 10.1074/jbc.271.20.11745
  • Kirtane MV, Bhandari A, Narang P, et al. Cinnarizine: A Contemporary Review. Indian J Otolaryngol Head Neck Surg. 2019 Nov;71(Suppl 2):1060–1068. doi: 10.1007/s12070-017-1120-7
  • Afdhal N, Zeuzem S, Kwo P, et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N Engl J Med. 2014 May 15;370(20):1889–1898. doi: 10.1056/NEJMoa1402454
  • Jacobson IM, Gordon SC, Kowdley KV, et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N Engl J Med. 2013 May 16;368(20):1867–1877. doi: 10.1056/NEJMoa1214854
  • Lawitz E, Mangia A, Wyles D, et al. Sofosbuvir for previously untreated chronic hepatitis C infection. N Engl J Med. 2013 May 16;368(20):1878–1887. doi: 10.1056/NEJMoa1214853
  • Mangia A, Milligan S, Khalili M, et al. Global real-world evidence of sofosbuvir/velpatasvir as simple, effective HCV treatment: analysis of 5552 patients from 12 cohorts. Liver Int. 2020 Aug;40(8):1841–1852. doi: 10.1111/liv.14537
  • Lagrutta A, Zeng H, Imredy J, et al. Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav1.2 over-expressing cells. Toxicol Appl Pharmacol. 2016 Oct 1;308:66–76. doi: 10.1016/j.taap.2016.08.006
  • Lagrutta A, Regan CP, Zeng H, et al. Cardiac drug-drug interaction between HCV-NS5B pronucleotide inhibitors and amiodarone is determined by their specific diastereochemistry. Sci Rep. 2017 Mar 22;7(1):44820. doi: 10.1038/srep44820
  • Millard DC, Strock CJ, Carlson CB, et al. Identification of drug-drug interactions in vitro: a case study evaluating the effects of sofosbuvir and amiodarone on hiPSC-Derived cardiomyocytes. Toxicol Sci. 2016 Nov;154(1):174–182. doi: 10.1093/toxsci/kfw153
  • Field MJ, Cox PJ, Stott E, et al. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17537–42. doi: 10.1073/pnas.0409066103
  • Domon Y, Arakawa N, Inoue T, et al. Binding characteristics and analgesic effects of Mirogabalin, a novel ligand for the α(2)δ subunit of voltage-gated calcium channels. J Pharmacol Exp Ther. 2018 Jun;365(3):573–582. doi: 10.1124/jpet.117.247551
  • Gee NS, Brown JP, Dissanayake VU, et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem. 1996 Mar 8;271(10):5768–76. doi: 10.1074/jbc.271.10.5768
  • Bauer CS, Nieto-Rostro M, Rahman W, et al. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci. 2009 Apr 1;29(13):4076–88. doi: 10.1523/JNEUROSCI.0356-09.2009
  • Cassidy JS, Ferron L, Kadurin I, et al. Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary α2δ-1 subunits. Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8979–8984. doi: 10.1073/pnas.1403731111
  • Tran-Van-Minh A, Dolphin AC. The alpha2delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2delta-2. J Neurosci. 2010 Sep 22;30(38):12856–67. doi: 10.1523/JNEUROSCI.2700-10.2010
  • Ramírez D, Gonzalez W, Fissore RA, et al. Conotoxins as tools to understand the physiological function of voltage-gated calcium (Ca(v)) channels. Mar Drugs. 2017 Oct 13;15(10):313. doi: 10.3390/md15100313
  • Schmidtko A, Lötsch J, Freynhagen R, et al. Ziconotide for treatment of severe chronic pain. Lancet. 2010 May 1;375(9725):1569–1577. doi: 10.1016/S0140-6736(10)60354-6
  • de Weille JR, Schweitz H, Maes P, et al. Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2437–40. doi: 10.1073/pnas.88.6.2437
  • Kuroda H, Chen YN, Watanabe TX, et al. Solution synthesis of calciseptine, an L-type specific calcium channel blocker. Pept Res. 1992 Sep-Oct;5(5):265–268.
  • Yasuda O, Morimoto S, Chen Y, et al. Calciseptine binding to a 1,4-dihydropyridine recognition site of the L-type calcium channel of rat synaptosomal membranes. Biochem Biophys Res Commun. 1993 Jul 30;194(2):587–594. doi: 10.1006/bbrc.1993.1862
  • Schleifer KJ. Comparative molecular modelling study of the calcium channel blockers nifedipine and black mamba toxin FS2. J Comput Aided Mol Des. 1997 Sep;11(5):491–501. doi: 10.1023/A:1007974124426
  • Kini RM, Caldwell RA, Wu QY, et al. Flanking proline residues identify the L-type Ca2+ channel binding site of calciseptine and FS2. Biochemistry. 1998 Jun 23;37(25):9058–9063. doi: 10.1021/bi9802723
  • Chen C-C, Gao S, Ai H-S, et al. Racemic X-ray structure of L-type calcium channel antagonist calciseptine prepared by total chemical synthesis. Sci China Chem. 2018 06 1;61(6):702–707. doi: 10.1007/s11426-017-9198-y