1,343
Views
0
CrossRef citations to date
0
Altmetric
Article Commentary

Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology

, , &
Article: 2297605 | Received 10 Oct 2023, Accepted 05 Dec 2023, Published online: 28 Dec 2023

References

  • Durant F, Morokuma J, Fields C, et al. Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophys J. 2017;112(10):2231–8. doi: 10.1016/j.bpj.2017.04.011
  • Oliveira KMC, Barker JH, Berezikov E, et al. Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model. Sci Rep. 2019;9(1):11433. doi: 10.1038/s41598-019-47389-w
  • Herrera-Rincon C, Golding AS, Moran KM, et al. Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb. Cell Rep. 2018;25(6):1593–1609.e7. doi: 10.1016/j.celrep.2018.10.010
  • Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. Wiley Interdiscip Rev Syst Biol Med. 2013;5(6):657–676. doi: 10.1002/wsbm.1236
  • Hechavarria D, Dewilde A, Braunhut S, et al. BioDome regenerative sleeve for biochemical and biophysical stimulation of tissue regeneration. Med Eng Phys. 2010;32(9):1065–1073. doi: 10.1016/j.medengphy.2010.07.010
  • McLaughlin KA, Levin M. Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. Dev Biol. 2018;433(2):177–189. doi: 10.1016/j.ydbio.2017.08.032
  • Sakellakis M, Chalkias A. The role οf ion channels in the development and progression of prostate cancer. Mol Diagn Ther. 2023;27(2):227–242. doi: 10.1007/s40291-022-00636-9
  • Kelleher FC, Fennelly D, Rafferty M. Common critical pathways in embryogenesis and cancer. Acta Oncol. 2006;45(4):375–388. doi: 10.1080/02841860600602946
  • Shimogori T, Banuchi V, Ng HY, et al. Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development. 2004;131(22):5639–5647. doi: 10.1242/dev.01428
  • Lin SY, Xia W, Wang JC, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A. 2000;97(8):4262–4266. doi: 10.1073/pnas.060025397
  • Rubin JB, Rowitch DH. Medulloblastoma: a problem of developmental biology. Cancer Cell. 2002;2(1):7–8. doi: 10.1016/s1535-6108(02)00090-9
  • Watkins DN, Berman DM, Burkholder SG, et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422(6929):313–317. doi: 10.1038/nature01493
  • Grego-Bessa J, Díez J, Timmerman L, et al. Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle. 2004;3(6):718–721.
  • Labbé JC, Maddox PS, Salmon ED, et al. PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr Biol. 2003;13(9):707–714. doi: 10.1016/s0960-9822(03)00251-3
  • Wei X, Cheng Y, Luo Y, et al. The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination. Dev Biol. 2004;269(1):286–301. doi: 10.1016/j.ydbio.2004.01.017
  • Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242(4885):1528–1534. doi: 10.1126/science.3201241
  • Oxburgh L, Chu GC, Michael SK, et al. Tgfbeta superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population. Development. 2004;131(18):4593–4605.
  • Keller ET, Zhang J, Cooper CR, et al. Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev. 2001;20(3–4):333–349. doi: 10.1023/a:1015599831232
  • Lee JM. The good oncogene: when bad genes identify good outcome in cancer. Med Hypotheses. 2011;76(2):259–263. doi: 10.1016/j.mehy.2010.10.015
  • Litan A, Langhans SA. Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front Cell Neurosci. 2015;9:86. doi: 10.3389/fncel.2015.00086
  • Rao VR, Perez-Neut M, Kaja S, et al. Voltage-gated ion channels in cancer cell proliferation. Cancers (Basel). 2015;7(2):849–875. doi: 10.3390/cancers7020813
  • Sikes RA, Walls AM, Brennen WN, et al. Therapeutic approaches targeting prostate cancer progression using novel voltage-gated ion channel blockers. Clin Prostate Cancer. 2003;2(3):181–187.
  • Fraser SP, Diss JK, Chioni AM, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res. 2005;11(15):5381–5389. doi: 10.1158/1078-0432.CCR-05-0327
  • Ware AW, Harris JJ, Slatter TL, et al. The epithelial sodium channel has a role in breast cancer cell proliferation. Breast Cancer Res Treat. 2021;187(1):31–43. doi: 10.1007/s10549-021-06133-7
  • Nilius B, Schwarz G, Droogmans G. Control of intracellular calcium by membrane potential in human melanoma cells. Am J Physiol. 1993;265(6 Pt 1):C1501–1510. doi: 10.1152/ajpcell.1993.265.6.C1501
  • Staudacher I, Jehle J, Staudacher K, et al. HERG K+ channel-dependent apoptosis and cell cycle arrest in human glioblastoma cells. PLoS One. 2014;9(2):e88164. doi: 10.1371/journal.pone.0088164
  • Payne SL, Ram P, Srinivasan DH, et al. Potassium channel-driven bioelectric signalling regulates metastasis in triple-negative breast cancer. EBioMedicine. 2022;75:103767. doi: 10.1016/j.ebiom.2021.103767
  • Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 2002;186(1):99–105.
  • Cammann C, Kulla J, Wiebusch L, et al. Proteasome inhibition potentiates Kv1.3 potassium channel expression as therapeutic target in drug-sensitive and -resistant human melanoma cells. Biomed Pharmacother. 2023;168:115635.
  • Das A, Pushparaj C, Bahí N, et al. Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res. 2012;25(2):200–212. doi: 10.1111/j.1755-148X.2012.00978.x
  • Valerie NC, Dziegielewska B, Hosing AS, et al. Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol. 2013;85(7):888–897. doi: 10.1016/j.bcp.2012.12.017
  • Zhang Y, Zhang J, Jiang D, et al. Inhibition of T-type Ca2 + channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol. 2012;166(4):1247–1260.
  • Olsen ML, Schade S, Lyons SA, et al. Expression of voltage-gated chloride channels in human glioma cells. J Neurosci. 2003;23(13):5572–5582. doi: 10.1523/JNEUROSCI.23-13-05572.2003
  • Habela CW, Sontheimer H. Cytoplasmic volume condensation is an integral part of mitosis. Cell Cycle. 2007;6(13):1613–1620. doi: 10.4161/cc.6.13.4357
  • Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med. 2010;16(3):107–121. doi: 10.1016/j.molmed.2010.01.005
  • Chalkias A, Spyropoulos V, Georgiou G, et al. Baseline values and kinetics of IL-6, procalcitonin, and TNF-α in Landrace-Large white swine anesthetized with propofol-based total intravenous anesthesia. Biomed Res Int. 2021;2021:6672573. doi: 10.1155/2021/6672573
  • Lirk P, Berger R, Hollmann MW, et al. Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br J Anaesth. 2012;109(2):200–207.
  • Baptista-Hon DT, Robertson FM, Robertson GB, et al. Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function. Br J Anaesth. 2014;113 Suppl 1:i39–i48. doi: 10.1093/bja/aeu104
  • Xuan W, Zhao H, Hankin J, et al. Local anesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms in vitro. Sci Rep. 2016;6:26277. doi: 10.1038/srep26277
  • Jiang Y, Gou H, Zhu J, et al. Lidocaine inhibits the invasion and migration of TRPV6-expressing cancer cells by TRPV6 downregulation. Oncol Lett. 2016;12(2):1164–1170. doi: 10.3892/ol.2016.4709
  • Driffort V, Gillet L, Bon E, et al. Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization. Mol Cancer. 2014;13:264. doi: 10.1186/1476-4598-13-264
  • Nelson M, Yang M, Dowle AA, et al. The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer. 2015;14(1):13. doi: 10.1186/s12943-014-0277-x
  • Fairhurst C, Martin F, Watt I, et al. Sodium channel-inhibiting drugs and cancer-specific survival: a population-based study of electronic primary care data. BMJ Open. 2023;13(2):e064376. doi: 10.1136/bmjopen-2022-064376
  • Roger S, Gillet L, Le Guennec JY, et al. Voltage-gated sodium channels and cancer: is excitability their primary role? Front Pharmacol. 2015;6:152.
  • Lopez-Charcas O, Pukkanasut P, Velu SE, et al. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience. 2021;24(4):102270. doi: 10.1016/j.isci.2021.102270
  • Leslie TK, Brackenbury WJ. Sodium channels and the ionic microenvironment of breast tumours. J Physiol. 2023;601(9):1543–1553. doi: 10.1113/JP282306
  • D’Imperio S, Monasky MM, Micaglio E, et al. Brugada syndrome: warning of a systemic condition? Front Cardiovasc Med. 2021;8:771349.
  • Zúñiga L, Cayo A, González W, et al. Potassium channels as a target for cancer therapy: Current perspectives. Onco Targets Ther. 2022;15:783–797.
  • Pardo LA, Stühmer W. The roles of K(+) channels in cancer. Nat Rev Cancer. 2014;14(1):39–48. doi: 10.1038/nrc3635
  • Hemmerlein B, Weseloh RM, Mello de Queiroz F, et al. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer. 2006;5:41. doi: 10.1186/1476-4598-5-41
  • Asher V, Sowter H, Shaw R, et al. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J Surg Oncol. 2010;8:113. doi: 10.1186/1477-7819-8-113
  • Hernández-Reséndiz I, Pacheu-Grau D, Sánchez A, et al. Inhibition of Kv10.1 channels sensitizes mitochondria of cancer cells to antimetabolic agents. Cancers (Basel). 2020;12(4):920. doi: 10.3390/cancers12040920
  • Luis E, Anaya-Hernández A, León-Sánchez P, et al. The Kv10.1 channel: a promising target in cancer. Int J Mol Sci. 2022;23(15):8458. doi: 10.3390/ijms23158458
  • Arcangeli A, Becchetti A. hERG channels: from antitargets to novel targets for cancer therapy. Clin Cancer Res. 2017;23(1):3–5. doi: 10.1158/1078-0432.CCR-16-2322
  • He S, Moutaoufik MT, Islam S, et al. HERG channel and cancer: a mechanistic review of carcinogenic processes and therapeutic potential. Biochim Biophys Acta Rev Cancer. 2020;1873(2):188355. doi: 10.1016/j.bbcan.2020.188355
  • Lansu K, Gentile S. Potassium channel activation inhibits proliferation of breast cancer cells by activating a senescence program. Cell Death Dis. 2013;4(6):e652. doi: 10.1038/cddis.2013.174
  • Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. J Biol Chem. 2012;287(38):31666–31673.
  • Rotshild V, Hirsh Raccah B, Gazawe M, et al. Calcium channel blocker use and the risk for breast cancer: a population-based nested case-control study. Cancers (Basel). 2022;14(9):2344. doi: 10.3390/cancers14092344
  • Hong S, Bi M, Wang L, et al. CLC-3 channels in cancer (review). Oncol Rep. 2015;33(2):507–514.
  • Xu B, Mao J, Wang L, et al. ClC-3 chloride channels are essential for cell proliferation and cell cycle progression in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 2010;42(6):370–380. doi: 10.1093/abbs/gmq031
  • Luo Y, Liu X, Li X, et al. Identification and validation of a signature involving voltage-gated chloride ion channel genes for prediction of prostate cancer recurrence. Front Endocrinol. 2022;13:1001634.
  • Badwe RA, Parmar V, Nair N, et al. Effect of peritumoral infiltration of local anesthetic before surgery on survival in early breast cancer. J Clin Oncol. 2023;JCO2201966. doi: 10.1200/JCO.22.01966
  • Higgins T, Mittendorf EA. Peritumoral lidocaine injection: a low-cost, easily implemented intervention to improve outcomes in early-stage breast cancer. J Clin Oncol. 2023;41(18):3287–3290. JCO2300418. doi: 10.1200/JCO.23.00418
  • Dominiak A, Chełstowska B, Olejarz W, et al. Communication in the cancer microenvironment as a target for therapeutic interventions. Cancers (Basel). 2020;12(5):1232. doi: 10.3390/cancers12051232