682
Views
8
CrossRef citations to date
0
Altmetric
Articles

Occupational exposure to respirable dust from the coal-fired power generation process: sources, concentration, and health risk assessment

ORCID Icon, , , , , & show all

References

  • Maghakyan N, Tepanosyan G, Belyaeva O, Sahakyan L, Saghatelyan A. Assessment of pollution levels and human health risk of heavy metals in dust deposited on Yerevan’s tree leaves (Armenia). Acta Geochim. 2017;36(1):16–26. doi:10.1007/s11631-016-0122-6.
  • Yang CY, Huang CC, Chiu HF, Chiu JF, Lan SJ, Ko YC. Effects of occupational dust exposure on the respiratory health of Portland cement workers. J Toxicol Environ Health, Part A. 1996;49(6):581–588. doi:10.1080/009841096160637.
  • Ishtiaq M, Jehan N, Khan SA. Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. Environ Sci Pollut R. 2018;25(15):1–8. doi:10.1007/s11356-018-1655-5.
  • Liou SH, Chen YP, Shih WY, Lee CC. Pneumoconiosis and pulmonary function defects in silica-exposed fire brick workers. Arch Environ Occup Health. 1996;51(3):227–233. doi:10.1080/00039896.1996.9936020.
  • Yamanaka MW, Guidotti TL, Koehncke N, Taylor FM, Taylor C, Harman L. Wood dust levels in Alberta sawmills. Arch Environ Occup Health. 2009;64(4):270–277. doi:10.1080/19338240903338247.
  • Lee KY, Lawson RJ, Olenchock SA, et al. Personal exposure to inorganic and organic dust in manual harvest of California citrus and table grapes. J Occup Environ Hyg. 2004;1(8):505–514. doi:10.1080/15459620490471616.
  • Wilson WE, Chow JC, Claiborn C, Wei FS, Engelbrecht J, Watson JG. Monitoring of particulate matter outdoors. Chemosphere. 2002;49(9):1002–1043. doi:10.1016/S0045-6535(02)00270-9.
  • Wang JY, Li S, Wang SG, Shang KZ. Effects of long-term dust exposure on human respiratory system health in Minqin County, China. Arch Environ Occup Health. 2015;70(4):225–231. doi:10.1080/19338244.2013.872077.
  • Rice FL, Park R, Stayner L, Smith R, Gilbert S, Checkoway H. Crystalline silica exposure and lung cancer mortality in diatomaceous earth industry workers: a quantitative risk assessment. Occup Environ Med. 2001;58(1):38–45. doi:10.1136/oem.58.1.38.
  • Stobnicka A, Górny R. Exposure to flour dust in the occupational environment. Int J Occup Saf Ergo. 2015;21(3):241–249. doi:10.1080/10803548.2015.1081764.
  • Khedher SB, Neri M, Guida F, et al. Occupational exposure to textile dust and lung cancer risk: result from the ICARE study. Am J Ind Med. 2017;61(3):1–13. doi:10.1002/ajim.22799.
  • Rodríguez-Zamora MG, Medina-Escobar L, Mora G, Zock JP, Joode B, Mora AM. Dust exposure in workers from grain storage facilities in Costa Rica. Int J Hyg Environ Health. 2017;220(6):1039–1045. doi:10.1016/j.ijheh.2017.06.002.
  • Zilaout H, Vlaanderen J, Houba R, Kromhout H. 15 years of monitoring occupational exposure to respirable dust and quartz within the European industrial minerals sector. Int J Hyg Environ Health. 2017;73(Suppl 1):A89.1–A89. doi:10.1016/j.ijheh.2017.03.010.
  • Landen DD, Wassell JT, McWilliams L, Patel A. Coal dust exposure and mortality from ischemic heart disease among a cohort of U.S. coal miners. Am J Ind Med. 2011;54(10):727–733. doi:10.1002/ajim.20986.
  • Zhao Y, Wang SX, Duan L, Lei Y, Cao PF, Hao JM. Primary air pollutant emissions of coal-fired power plants in China: current status and future prediction. Atmos Environ. 2008;42(36):8442–8452. doi:10.1016/j.atmosenv.2008.08.021.
  • Guttikunda SK, Jawahar P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos Environ. 2014;92:449–460. doi:10.1016/j.atmosenv.2014.04.057.
  • Zhou Q, Huang GH, Chan CW. Development of an intelligent decision support system for air pollution control at coal-fired power plants. Expert Syst Appl. 2004;26(3):335–356. doi:10.1016/j.eswa.2003.09.005.
  • Kaur S, Gill MS, Gupta K, Manchanda K. Effect of occupation on lipid peroxidation and antioxidant status in coal-fired thermal plant workers. Int J App Basic Med Res. 2013;3(2):93–97. doi:10.4103/2229-516X.117065.
  • Bird MJ, MacIntosh DL, Williams PL. Occupational exposures during routine activities in coal-fueled power plants. J Occup Environ Hyg. 2004;1(6):403–413. doi:10.1080/15459620490453346.
  • Felten MK, Knoll L, Eisenhawer C, et al. Retrospective exposure assessment to airborne asbestos among power industry workers. J Occup Med Toxicol. 2010;5(1):15–24. doi:10.1186/1745-6673-5-15.
  • Lehocky AH, Williams PL. Comparison of respirable samplers to direct-reading real-time aerosol monitors for measuring coal dust. Am Ind Hyg Assoc J. 1996;57(11):1013–1018. doi:10.1080/15428119691014341.
  • Huang LR, Li WY, Li JH, Li M, Wu YJ. A 10-year follow-up study on health status of workers exposed to coal dust in a fire-power station. Occup Health Emerg Rescue. 2009;27(3):146–148 (in Chinese). doi:10.16369/j.oher.issn.1007-1326.2009.03.011.
  • National Bureau of Statistics of the Peoples’ Republic of China. China Statistical Yearbook 2015. Beijing, China: China Statistics Press; 2015.
  • Department of Energy Statistics, National Bureau of Statistics of the Peoples’ Republic of China. China Energy Statistical Yearbook 2013. Beijing, China: China Statistics Press; 2013.
  • Ancora MP, Zhang L, Wang SX, Schreifels J, Hao JM. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China. J Environ Sci. 2015;33(:125–134. doi:10.1016/j.jes.2015.02.003.
  • Wang JM, Wang RG, Zhu YC, Li JY. Life cycle assessment and environmental cost accounting of coal-fired power generation in China. Energy Policy. 2018;115:374–384. doi:10.1016/j.enpol.2018.01.040.
  • National Energy Administration (NEA). Statistics of China power industry 2017. https://www.nea.gov.cn/2018-01/22/c_136914154.htm. Published January 22, 2018. Accessed June 20, 2018.
  • Din SAM, Yahya N, Abdullah A. Fine particulates matter (PM2.5) from coal-fired power plant in Manjung and its health impacts. Procedia-Soc Behav Sci. 2013;85:92–99. doi:10.1016/j.sbspro.2013.08.341.
  • Mokhtar MM, Hassim MH, Taib RM. Health risk assessment of emissions from a coal-fired power plant using AERMOD modelling. Process Saf Environ. 2014;92(5):476–485. doi:10.1016/j.psep.2014.05.008.
  • Hicks J, Yager J. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash. J Occup Environ Hyg. 2006;3(8):448–455. doi:10.1080/15459620600802747.
  • National Health Commission of the People’s Republic of China (NHCC). Determination of Dust in the Air of Workplace Part 2: Respirable Dust Concentration (GBZ/T 192.2–2007). [Standard] Beijing, China: NHCC; 2007.
  • Chen YC, Chiang HC, Hsu CY, et al. Ambient PM2.5–bound polycyclic aromatic hydrocarbons (PAHs) in Changhua county, central Taiwan: seasonal variation, source apportionment and cancer risk assessment. Environ Pollut. 2016;218(16):372–382. doi:10.1016/j.envpol.2016.07.016.
  • Antonini JM. Health effects of welding. Crit Rev Toxicol. 2003;33(1):61–103. doi:10.1080/713611032.
  • Hedmer M, Karlsson JE, Andersson U, Jacobsson H, Nielsen J, Tinnerberg H. Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry. Int Arch Occup Environ Health. 2014;87(6):623–634. doi:10.1007/s00420-013-0896-3.
  • United States Environmental Protection Agency (USEPA). Risk assessment guidance for superfund (RAGS), Volume I: Human health evaluation manual (Part F, Supplemental guidance for inhalation risk assessment). Final EPA/540-R-070-002. https://www.epa.gov/sites/production/files/2015-09/documents/partf_200901_final.pdf. Published September 2015. Accessed June 20, 2018.
  • United States Environmental Protection Agency (USEPA). Exposure Factors Handbook 2011 Edition (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011. https://cfpub.epa.gov/si/si_public_record_report.cfm/Lab=NCEA&direntryid=236252. Accessed June 20, 2018).
  • Ministry of Ecology and Environment of the People’s Republic of China (MEEC). Technical Guideline for Population Exposure Assessment of Environmental Pollutant (HJ 875–2017). [Standard] Beijing, China: MEEC; 2017.
  • Ministry of Ecology and Environment of the People’s Republic of China (MEEC). Exposure Factors Handbook of Chinese Population. Beijing, China: China Environmental Press; 2013.
  • Gao ZH, Li XD, Zeng GM, et al. Effect of health risk assessment of static dust impacting on breathing exposure way. Chinese J Environ Eng. 2016;10(8):4595–4600 (in Chinese). doi:10.12030/j.cjee.201503116.
  • Masto RE, George J, Rout TK, Ram LC. Multi element exposure risk from soil and dust in a coal industrial area. J Geochem Explor. 2017;176:100–107. doi:10.1016/j.gexplo.2015.12.009.
  • United States Environmental Protection Agency (USEPA ). Reference dose (RfD): description and use in health risk. https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments. Accessed June 20, 2018.
  • National Health Commission of the People’s Republic of China (NHCC). Occupational Exposure Limits for Hazardous Agents in the Workplace Part 1: Chemical Hazardous Agents (GBZ 2.1–2007). [Standard] Beijing, China: NHCC; 2007.
  • Kadi MW, Ali N, Albar H. Phthalates and polycyclic aromatic hydrocarbons (PAHs) in the indoor settled carpet dust of mosques, health risk assessment for public. Sci Total Environ. 2018;627:134–140. doi:10.1016/j.scitotenv.2018.01.146.
  • Li HL, Song WW, Zhang ZF, et al. Phthalates in dormitory and house dust of northern Chinese cities: occurrence, human exposure, and risk assessment. Sci Total Environ. 2016;565:496–502. doi:10.1016/j.scitotenv.2016.04.187.
  • Tong R, Cheng M, Zhang L, et al. The construction dust-induced occupational health risk using Monte-Carlo simulation. J Clean Prod. 2018;184:598–608. doi:10.1016/j.jclepro.2018.02.286.
  • Havelaar AH, Hollander A, Teunis PFM, et al. Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale. Environ Health Persp. 2000;108(4):315–321. doi:10.1289/ehp.00108315.
  • Murray CJL, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2197–2223. doi:10.1016/S0140-6736(12)61899-6.
  • Timm C, Luther S, Jurzik L, Hamza IA, Kistemann T. Applying QMRA and DALY to assess health risks from river bathing. Int J Hyg Environ Health. 2016;219(7):681–692. doi:10.1016/j.ijheh.2016.07.017.
  • World Health Organization (WHO). Global Health Observatory (GHO) data: mortality and burden of disease from ambient air pollution—situation and trends. https://www.who.int/gho/phe/outdoor_air_pollution/burden/en/. Accessed June 20, 2018.
  • Gao TT, Wang XC, Chen R, Ngo HH, Guo WS. Disability adjusted life year (DALY): A useful tool for quantitative assessment of environmental pollution. Sci Total Environ. 2015;511:268–287. doi:10.1016/j.scitotenv.2014.11.048.
  • Hsieh NH, Liao CM. Assessing exposure risk for dust storm events associated lung function decrement in asthmatics and implications for control. Atmos Environ. 2013;68:256–264. doi:10.1016/j.atmosenv.2012.11.064.
  • Li XD, Su S, Huang TJ. Health damage assessment model for construction dust. J Tsinghua Univ Sci Technol. 2015;55:50–55 (in Chinese). doi:10.16511/j.cnki.qhdxxb.2015.01.009.
  • Zhao L, Ji L, Yao JY, Long S, Li D, Yang YK. Quantifying the fate and risk assessment of different antibiotics during wastewater treatment using a Monte Carlo simulation. J Clean Prod. 2017;168:626–631. doi:10.1016/j.jclepro.2017.09.065.
  • Deng Y, Ni FH, Yao ZG. The Monte Carlo-based uncertainty health risk assessment associated with rural drinking water quality. JWARP. 2012;04(09):772–778. doi:10.4236/jwarp.2012.49088.
  • Yan YL, Peng L, Cheng N, Bai HL, Mu L. Health risk assessment of toxic VOCs species for the coal fire well drillers. Environ Sci Pollut Res. 2015;22(19):15132–15144. doi:10.1007/s11356-015-4729-7.
  • Wang HL, Li LY. Analysis on effect of dust control facilities of coal conveying system before and after rectification in certain coal-fired power plant. Chinese J Ind Med. 2017;30(3):226–228 (in Chinese). doi:10.13631/j.cnki.zggyyx.2017.03.026.
  • Baroni G, Tarantola S. A general probabilistic framework for uncertainty and global sensitivity analysis of deterministic models: a hydrological case study. Environ Model Softw. 2014;51(51):26–34. doi:10.1016/j.envsoft.2013.09.022.
  • Standardization Administration of the People’s Republic of China (SAC). Respiratory Protective Equipment Non-Powered Air-Purifying Particle Respirator (GB 2626–2006). [Standard] Beijing, China: SAC; 2006.
  • Hernández AF, Tsatsakis AM. Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment. Food Chem Toxicol. 2017;103:188–193. doi:10.1016/j.fct.2017.03.012.
  • Niu ZG, Zang X. Research advances of the physiologically based pharmacokinetic (PBPK) models and their applications in health risk assessment. J Saf Environ. 2015;15(6):30–34 (in Chinese). doi:10.13637/j.issn.1009-6094.2015.06.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.