214
Views
0
CrossRef citations to date
0
Altmetric
Articles

Segregation of respirable dust for chemical and toxicological analyses

, , , , & ORCID Icon

References

  • Laney AS, Weissman DN. Respiratory diseases caused by coal mine dust. J Occup Environ Med. 2014;56:S18.
  • Santo Tomas LH. Emphysema and chronic obstructive pulmonary disease in coal miners. Curr Opin Pulm Med. 2011;17(2):123–125. doi:10.1097/MCP.0b013e3283431674.
  • Schenker MB, Pinkerton KE, Mitchell D, et al. Pneumoconiosis from Agricultural Dust Exposure among Young California Farmworkers. Environ Health Perspect. 2009;117(6):988–994. doi:10.1289/ehp.0800144.
  • Linch KD. Respirable concrete dust-silicosis hazard in the construction industry. Appl Occup Environ Hyg. 2002;17(3):209–221. doi:10.1080/104732202753438298.
  • Crooks JL, Cascio WE, Percy MS, et al. The association between dust storms and daily non-accidental mortality in the United States, 1993–2005. Environ Health Perspect. 2016;124(11):1735–1743. doi:10.1289/EHP216.
  • Vodonos A, Friger M, Katra I, et al. The impact of desert dust exposures on hospitalizations due to exacerbation of chronic obstructive pulmonary disease. Air Qual Atmos Health. 2014;7(4):433–439. doi:10.1007/s11869-014-0253-z.
  • Johnston F, Hanigan I, Henderson S, et al. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ Res. 2011;111(6):811–816. doi:10.1016/j.envres.2011.05.007.
  • Duffin R, Tran L, Brown D, et al. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol. 2007;19(10):849–856. doi:10.1080/08958370701479323.
  • Tran CL, Buchanan D, Cullen RT, et al. Inhalation of poorly soluble particles. II. Influence Of particle surface area on inflammation and clearance. Inhal Toxicol. 2000;12(12):1113–1126. doi:10.1080/08958370050166796.
  • Lison D, Lardot C, Huaux F, et al. Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch Toxicol. 1997;71(12):725–729. doi:10.1007/s002040050453.
  • Lippmann M. “Respirable” dust sampling. Am Ind Hyg Assoc J. 1970;31(2):138–159. doi:10.1080/0002889708506223.
  • Miller BG, MacCalman L. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz. Occup Environ Med. 2010;67(4):270–276. doi:10.1136/oem.2009.046151.
  • Soutar CA, Miller BG, Gregg N, et al. Assessment of human risks from exposure to low toxicity occupational dusts. Ann Occup Hyg. 1997;41(2):123–133. doi:10.1016/S0003-4878(96)00014-2.
  • Cherrie JW, Brosseau LM, Hay A, et al. Low-toxicity dusts: current exposure guidelines are not sufficiently protective. Ann Occup Hyg. 2013;57(6):685–691. doi:10.1093/annhyg/met038.
  • Calvert GM, Rice FL, Boiano JM, et al. Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states of the United States. Occup Environ Med. 2003;60(2):122–129. doi:10.1136/oem.60.2.122.
  • Donaldson K, Seaton A. A short history of the toxicology of inhaled particles. Part Fibre Toxicol. 2012;9:13. doi:10.1186/1743-8977-9-13.
  • Cook AG, Weinstein P, Centeno JA. Health effects of natural dust. Biol Trace Elem Res. 2005;103:1–15.
  • Leung CC, Yu IT, Chen W. Silicosis. Lancet. 2012;379(9830):2008–2018. doi:10.1016/S0140-6736(12)60235-9.
  • Pavan C, Fubini B. Unveiling the variability of “Quartz Hazard” in light of recent toxicological findings. Chem Res Toxicol. 2017;30(1):469–485. doi:10.1021/acs.chemrestox.6b00409.
  • Warheit DB, Webb TR, Colvin VL, et al. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci. 2007;95(1):270–280. doi:10.1093/toxsci/kfl128.
  • Donaldson KE, Borm PJ. The quartz hazard: a variable entity. Ann Occup Hyg. 1998;42(5):287–294. doi:10.1016/S0003-4878(98)00044-1.
  • IARC Monograph. IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humans Vol. 68: Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils. Geneva: IARC Press; 1997.
  • Clouter A, Brown D, Höhr D, et al. Inflammatory effects of respirable quartz collected in workplaces versus standard DQ12 quartz: particle surface correlates. Toxicol Sci. 2001;63(1):90–98. doi:10.1093/toxsci/63.1.90.
  • Volckens J, O'Shaughnessy PT, Hemenway DR. An aerosol generation system for the production of respirable grain dust. Appl Occup Environ Hyg. 1998;13(2):122–126. doi:10.1080/1047322X.1998.10389136.
  • Veranth JM, Smith KR, Aust AE, et al. Coal fly ash and mineral dust for toxicology and particle characterization studies: equipment and methods for PM2.5- and PM1-enriched samples. Aerosol Sci Technol. 2000;32(2):127–141. doi:10.1080/027868200303830.
  • Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of simulated lunar and martian dusts in mice: I. Histopathology 7 and 90 Days After Intratracheal Instillation. Inhal Toxicol. 2002;14(9):901–916. doi:10.1080/08958370290084683.
  • Teague SV, Veranth JM, Aust AE, et al. Dust generator for inhalation studies with limited amounts of archived particulate matter. Aerosol Sci Technol. 2005;39(2):85–91. doi:10.1080/027868290903899.
  • Liu Y, Schnare DW, Eimer BC, et al. Dry separation of respirable lunar dust: providing samples for the lunar airborne dust toxicity advisory group. Planet Space Sci. 2008;56(11):1517–1523. doi:10.1016/j.pss.2008.08.003.
  • Gonzales P, Felix O, Alexander C, et al. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits. J Hazard Mater. 2014;280:619–626. doi:10.1016/j.jhazmat.2014.09.002.
  • International Organization for Standardization, ISO 7708:1995. Air quality—particle size fraction definitions for health-related sampling; 1995.
  • CEN, European Committee for Standardisation (CEN). Workplace atmospheres–size fraction definitions for measurement of airborne particles, CEN Standard EN 481; 1993.
  • ACGIH, American Conference of Governmental Industrial Hygienists (ACGIH). Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs). ACGIH; 2014.
  • Pensis I, Luetzenkirchen F, Friede B. SWeRF-A method for estimating the relevant fine particle fraction in bulk materials for classification and labelling purposes. Ann Occup Hyg. 2014;58(4):501–511. doi:10.1093/annhyg/met076.
  • Kuempel ED, Attfield MD, Vallyathan V, et al. Pulmonary inflammation and crystalline silica in respirable coal mine dust: Dose response. J Biosci. 2003;28(1):61–69. doi:10.1007/BF02970133.
  • Liebers V, Raulf-Heimsoth M, Brüning T. Health effects due to endotoxin inhalation (review). Arch Toxicol. 2008;82(4):203–210. doi:10.1007/s00204-008-0290-1.
  • Decker P, Cohen B, Butala JH, et al. Exposure to wood dust and heavy metals in workers using CCA pressure-treated wood. J Am Ind Hyg Assoc. 2002;63(2):166–171. doi:10.1202/0002-8894(2002)063<0166:ETWDAH>2.0.CO;2.
  • Hinds WC. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New Jersey: John Wiley & Sons; 1999.
  • Gudmundsson A, Lidén G. Determination of cyclone model variability using a time-of-flight instrument. Aerosol Sci Technol 1998;28(3):197–214. doi:10.1080/02786829808965521.
  • Maynard AD, Kenny LC. Performance assessment of three personal cyclone models, using an Aerodynamic Particle Sizer. J Aerosol Sci. 1995;26(4):671–684. doi:10.1016/0021-8502(94)00131-H.
  • Kenny LC, Lidén G. A technique for assessing size-selective dust samplers using the APS and polydisperse test aerosols. J Aerosol Sci. 1991;22(1):91–100. doi:10.1016/0021-8502(91)90095-Y.
  • Cauda E, Sheehan M, Gussman R, et al. An evaluation of sharp cut cyclones for sampling diesel particulate matter aerosol in the presence of respirable dust. Ann Occup Hyg. 2014;58(8):995–1005. doi:10.1093/annhyg/meu045.
  • Bartley DL, Chen CC, Song R, et al. Respirable aerosol sampler performance testing. J Am Ind Hyg Assoc. 1994;55(11):1036–1046. doi:10.1080/15428119491018303.
  • Kenny LC, Bartley DL. The performance evaluation of aerosol samplers tested with monodisperse aerosols. J Aerosol Sci. 1995;26(1):109–126. doi:10.1016/0021-8502(94)E0071-5.
  • Aitken RJ, Baldwin PEJ, Beaumont GC, et al. Aerosol inhalability in low air movement environments. J Aerosol Sci. 1999;30(5):613–626. doi:10.1016/S0021-8502(98)00762-9.
  • CEN, European Committee for Standardisation (CEN). Workplace exposure—Assessment of sampler performance for measurement of airborne particle concentrations part 2: laboratory performance test based on determination of sampling efficiency, CEN Standard EN 13205-2:2014, 2014.
  • Jaques PA, Hopke PK, Gao P. Quantitative Analysis of Unique Deposition Pattern of Submicron Fe 3 O 4 Particles Using Computer-Controlled Scanning Electron Microscopy. Aerosol Sci Technol. 2012;46(8):905–912. doi:10.1080/02786826.2012.680985.
  • EPA, U.S. Environmental Protection Agency. Guidelines for the application of SEM/EDX analytical techniques to particulate matter samples. EPA/600/R-02/070, 2002.
  • Mamane Y, Willis R, Conner T. Evaluation of computer-controlled scanning electron microscopy applied to an ambient urban aerosol sample. Aerosol Sci Technol. 2001;34(1):97–107. doi:10.1080/02786820118842.
  • Hopke PK, Casuccio GS. Scanning Electron Spectroscopy, in Receptor Modeling for Air Quality Management. P.K. Hopke, ed. Amsterdam: Elsevier Science; 1991: 149–212.
  • Davies CN. Particle-fluid interaction. J Aerosol Sci. 1979;10(5):477–513. doi:10.1016/0021-8502(79)90006-5.
  • Hudson PK, Young MA, Kleiber PD, et al. Coupled infrared extinction spectra and size distribution measurements for several non-clay components of mineral dust aerosol (quartz, calcite, and dolomite). Atmos Environ. 2008;42(24):5991–5999. doi:10.1016/j.atmosenv.2008.03.046.
  • Wagner J, Leith D. Passive aerosol sampler. Part I: Principle of operation. Aerosol Sci Technol. 2001;34(2):186–192. doi:10.1080/027868201300034808.
  • Friedlander SK. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. New York: Oxford University Press; 2000.
  • Chen BT, Yeh HC, Fan BJ. Evaluation of the TSI small-scale powder disperser. J Aerosol Sci. 1995;26(8):1303–1313. doi:10.1016/0021-8502(96)80777-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.