197
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Combined remote sensing and multi-criteria analysis of wetland soil potential for rice production: case study of Ogun river basin, Nigeria

, ORCID Icon &
Pages 32-59 | Received 28 Feb 2022, Accepted 18 Jul 2022, Published online: 08 Aug 2022

References

  • Adagunodo, T. A., Bayowa, O. G., Usikalu, M. R., & Ojoawo, A. I. (2019). Radiogenic heat production in the coastal plain sands of ipokia, dahomey basin, Nigeria. MethodsX, 6, 1608–1616. https://doi.org/10.1016/j.mex.2019.07.006
  • Adeleye, N., Osabuohien, E. S., Adeogun, S., Fashola, S., Tasie, O., & Adeyemi, G. (2020). Access to land and food security: analysis of ‘priority crops’ production in Ogun State, Nigeria. In The palgrave handbook of agricultural and rural development in Africa (pp. 291–311). Palgrave Macmillan. doi: 10.1007/978-3-030-41513-6_14.
  • Adepoju, K. A., & Adelabu, S. A. (2020). Improving accuracy of landsat-8 OLI classification using image composite and multisource data with google earth engine. Remote Sensing Letters, 11(2), 107–116. https://doi.org/10.1080/2150704X.2019.1690792
  • Adewara, M. B., Oyewole, A. M., & Adenaiya, O. O. (2019). Mapping spatiotemporal land use land coverDynamics of yewa South LGA of Ogun State for urbanization monitoring. International Journal of Research in Engineering and Science (IJRES), 7(3), 69–79. http://eprints.federalpolyilaro.edu.ng/id/eprint/426.
  • Ahmed, K. R., Akter, S., Marandi, A., & Schüth, C. (2021). A simple and robust wetland classification approach by using optical indices, unsupervised and supervised machine learning algorithms. Remote Sensing Applications: Society and Environment, 23, 100569. https://doi.org/10.1016/j.rsase.2021.100569
  • Akinola, R., Pereira, L. M., Mabhaudhi, T., de Bruin, F. M., & Rusch, L. (2020). A review of indigenous food crops in Africa and the implications for more sustainable and healthy food systems. Sustainability, 12(8), 3493–3504. https://doi.org/10.3390/su12083493
  • Akintuyi, A. O., Fasona, M. J., Ayeni, A. O., & Soneye, A. S. (2021). Land use/land cover and climate change interaction in the derived savannah region of Nigeria. Environmental Monitoring and Assessment, 193(12), 1–24. https://doi.org/10.1007/s10661-021-09642-6
  • Al-Omran, A. M., Al-Wabel, M. I., El-Maghraby, S. E., Nadeem, M. E., & Al-Sharani, S. (2013). Spatial variability for some properties of the wastewater irrigated soils. Journal of the Saudi Society of Agricultural Sciences, 12(2), 167–175. https://doi.org/10.1016/j.jssas.2012.12.001
  • Alkhader, A. M. F. (2015). The impact of phosphorus fertilizers on heavy metals content of soils and vegetables grown on selected farms in Jordan. Agrotechnology, 5(1), 1–15. https://doi.org/10.4172/2168-9881.1000137
  • Almeida, C. R. D., Teodoro, A. C., & Gonçalves, A. (2021). Study of the Urban Heat Island (UHI) using remote sensing data/techniques: A systematic review. Environments, 8(10), 105. https://doi.org/10.3390/environments8100105
  • Amin, A., Nasim, W., Fahad, S., Ali, S., Ahmad, S., Rasool, A., Paz, J. O., Hammad, H. M., Sultana, S. R., Mubeen, M., Bakhat, H. F., Ahmad, N., Shah, G. M., Adnan, M., Noor, M., Basir, A., Saud, S., Habib Ur Rahman, M., & Paz, J. O. (2018). Evaluation and analysis of temperature for historical (1996–2015) and projected (2030–2060) climates in Pakistan using SimCLIM climate model: Ensemble application. Atmospheric Research, 213, 422–436. https://doi.org/10.1016/j.atmosres.2018.06.021
  • Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office USGS.
  • Appiah, D. O., Schröder, D., Forkuo, E. K., & Bugri, J. T. (2015). Application of geo-information techniques in land use and land cover change analysis in a peri-urban district of Ghana. ISPRS International Journal of Geo-Information, 4(3), 1265–1289. https://doi.org/10.3390/ijgi4031265
  • Arab, S. T., Islam, M., Shamsuzzoha, M., Alam, K. F., Muhsin, N., Noguchi, R., & Ahamed, T. (2022). A review of remote sensing applications in agriculture and forestry to establish big data analytics. Remote Sensing Application, 59: 1–24. doi:10.1007/978-981-19-0213-0_1.
  • Ayehu, G. T., & Besufekad, S. A. (2015). Land suitability analysis for rice production: A GIS based multi-criteria decision approach. American Journal of Geographic Information System, 4(3), 95–104. doi:10.5923/j.ajgis.20150403.02
  • Ayeni, A. O., Ogunsesan, A. A., & Adekola, O. A. (2019). Provisioning ecosystem services provided by the hadejia nguru wetlands, Nigeria–current status and future priorities. Scientific African, 5, e00124. https://doi.org/10.1016/j.sciaf.2019.e00124
  • Ayoade, M. A. (2017). Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS. Theoretical and Applied Climatology, 129(3), 1341–1354
  • Azabdaftari, A., & Sunarb, F. (2016). Soil salinity mapping using multitemporal Landsat data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 7, 3–9.
  • Badamfirooz, J., & Mousazadeh, R. (2019). Quantitative assessment of land use/land cover changes on the value of ecosystem services in the coastal landscape of Anzali international wetland. Environmental Monitoring and Assessment, 191(11), 1–13. https://doi.org/10.1007/s10661-019-7802-8
  • Bakx, T. R., Koma, Z., Seijmonsbergen, A. C., & Kissling, W. D. (2019). Use and categorization of light detection and ranging vegetation metrics in avian diversity and species distribution research. Diversity & Distributions, 25(7), 1045–1059. https://doi.org/10.1111/ddi.12915
  • Balogun, I., & Ishola, K. (2017). Projection of future changes in land use/landcover using cellular automata/Markov model over Akure city, Nigeria. Journal of Remote Sensing Technology, 5(1), 22–31. https://doi.org/10.18005/JRST0501003
  • Bank, (1991). Forest sector policy paper. The World Bank. Washington. DC.
  • Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A.C., & Silliman, B. R. (2017). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193. https://doi.org/10.1890/10-1510.1
  • Basavaraja, P. K., Dey, P., Saqeebulla, H. M., & Yogendra, N. D. (2017). Geo-reference-based soil fertility status in Hassan district of Karnataka, India for development of nutrient plan. Indian Journal of Soil Conservation, 45(2), 141–147.
  • Beeri, O., Phillips, R., Hendrickson, J., Frank, A. B., & Kronberg, S. (2007). Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie. Remote Sensing of Environment, 110(2), 216–225. https://doi.org/10.1016/j.rse.2007.02.027
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051–13069. https://doi.org/10.1016/j.eswa.2012.05.056
  • Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., & Viaggi, D. (Eds.). (2018). Multicriteria analysis in agriculture: Current trends and recent applications. Springer International Publishing.
  • Bevington, A. E., Twilley, R. R., & Sasser, C. E. (2022). Deltaic floodplain wetland vegetation dynamics along the sediment surface elevation gradient and in response to disturbance from river flooding and hurricanes in wax lake. Geomorphology, Vol. 398 (pp. 108011).
  • Bhat, R. A., Dar, S. A., Dar, D. A., & Dar, G. H. (2018). Municipal solid waste generation and current scenario of its management in India. International Journal of Advance Research in Science and Engineering, 7(2), 419–431.
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x
  • Brady, N. C., & Weil, R. R. (2014). The nature and properties of soil. In (14th New Int. Pearson New International Edition (pp.870-875).
  • Brejda, J. J., Moorman, T. B., Smith, J. L., Karlen, D. L., Allan, D. L., & Dao, T. H. (2000). Distribution and variability of surface soil properties at a regional scale. Soil Science Society of America Journal, 64(3), 974–982
  • Cai, M., Ren, C., Xu, Y., Lau, K. K. L., & Wang, R. (2018). Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology–A case study of Yangtze River Delta, China. Urban Climate, 24, 485–502. https://doi.org/10.1016/j.uclim.2017.05.010
  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field‐scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x
  • Change, C. (2016). Agriculture and food security. the state of food and agriculture (FAO Ed.). FAO. http://www.fao.org/state-of-food-agriculture/en/
  • Chavez, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459–479. https://doi.org/10.1016/0034-4257(88)90019-3
  • Cloete, P. C., & Idsardi, E. F. (2013). Consumption of indigenous and traditional food crops: Perceptions and realities from South Africa. Agroecology and Sustainable Food Systems, 37(8), 902–914. doi:10.1080/21683565.2013.805179.
  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
  • Dada, S. (2017). Public-private dialogue report on land administration, registration and acquisition in Ogun State. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).
  • Datta, S., Sinha, D., Chaudhary, V., Kar, S., & Singh, A. (2022). Water pollution of wetlands: a global threat to inland, wetland, and aquatic phytodiversity. In Ashok K. R(Ed.,) Handbook of research on monitoring and evaluating the ecological health of wetlands (pp. 27–50). IGI Global.
  • De Jesus, J. B., & Santana, I. D. M. (2017). Estimation of land surface temperature in caatinga area using Landsat 8 data. Journal of Hyperspectral Remote Sensing, 7(3), 150–157. doi:10.29150/jhrs.v7.3.p150-157.
  • Dehm, D., Becker, R., & Godre, A. (2019). SUAS based multispectral imagery for monitoring wetland inundation and vegetation. 2019110326. https://doi.org/10.20944/preprints201911.0326.v1
  • Di Vittorio, C. A., & Georgakakos, A. P. (2018). Land cover classification and wetland inundation mapping using MODIS. Remote Sensing of Environment, 204, 1–17. https://doi.org/10.1016/j.rse.2017.11.001
  • Ding, H., & Shi, W. (2013). Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City. International Journal of Remote Sensing, 34(15), 5503–5517. https://doi.org/10.1080/01431161.2013.792966
  • Dou, F., Soriano, J., Tabien, R. E., & Chen, K. (2016). Soil texture and cultivar effects on rice (Oryza sativa, L.) grain yield, yield components and water productivity in three water regimes. PloS one, 11(3), e0150549. https://doi.org/10.1371/journal.pone.0150549
  • Duarte, L., Teodoro, A. C., Monteiro, A. T., Cunha, M., & Gonçalves, H. (2018). QPhenoMetrics: An open-source software application to assess vegetation phenology metrics. Computers and Electronics in Agriculture, 148, 82–94. https://doi.org/10.1016/j.compag.2018.03.007
  • Eldeiry, A. A., & Garcia, L. A. (2008). Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing. Soil Science Society of America Journal, 72(1), 201–211. https://doi.org/10.2136/sssaj2007.0013
  • Environment Protection Authority. (2018). Consumption advice for recreationally caught game—East Gippsland. EPA publication 1672.2. EPA Victoria.
  • FAO. (2007). Land evaluation, towards a revised framework, FAO Rome.
  • Faraco, M. A., Uribe-Opazo, M. A., Silva, E. A. A. D., Johann, J. A., & Borssoi, J. A. (2008). Seleção de modelos de variabilidade espacial para elaboração de mapas temáticos de atributos físicos do solo e produtividade da soja. Revista Brasileira de Ciência do Solo, 32, 463–476.
  • Fathizad, H., Rostami, N., & Faramarzi, M. (2015). Detection and prediction of land cover changes using markov chain model in semi-arid rangeland in western Iran. Environmental Monitoring and Assessment, 187(10), 1–12. https://doi.org/10.1007/s10661-015-4805-y
  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Snyder, P. K., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772
  • Furby, S., Caccetta, P., & Wallace, J. (2010). Salinity monitoring in western Australia using remotely sensed and other spatial data. Journal of Environmental Quality, 39(1), 16–25. https://doi.org/10.2134/jeq2009.0036
  • Gao, T., Yang, X., Jin, C., Y, X., Ma, H., L, L., J, Y., Yu, H., D, Y., Q, Y., Xiao, Z., & Xu, B. (2013). Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, Northern China. PLoS One, 8(12), e83824. https://doi.org/10.1371/journal.pone.0083824
  • Good, T., & Giordano, P. A. (2019). Methods for constructing a colour composite image. Google Patents.
  • Guha, S., & Govil, H. (2021a). A long-term monthly analytical study on the relationship of LST with normalized difference spectral indices. European Journal of Remote Sensing, 54(1), 487–512. https://doi.org/10.1080/22797254.2021.1965496
  • Guha, S., & Govil, H. (2021b). Annual assessment on the relationship between land surface temperature and six remote sensing indices using landsat data from 1988 to 2019. Geocarto International, 1–20. https://doi.org/10.1080/10106049.2021.1886339
  • Guha, S., Govil, H., Taloor, A. K., Gill, N., & Dey, A. (2022). Land surface temperature and spectral indices: A seasonal study of Raipur City. Geodesy and Geodynamics, 13(1), 72–82. https://doi.org/10.1016/j.geog.2021.05.002
  • Habibie, M. I., Noguchi, R., Shusuke, M., & Ahamed, T. (2021). Land suitability analysis for maize production in Indonesia using satellite remote sensing and GIS-based multicriteria decision support system. GeoJournal, 86(2), 777–807. https://doi.org/10.1007/s10708-019-10091-5
  • Hassan, M. M., & Nazem, M. N. I. (2016). Examination of land use/land cover changes, urban growth dynamics, and environmental sustainability in Chittagong city, Bangladesh. Environment, Development, and Sustainability, 18(3), 697–716. https://doi.org/10.1007/s10668-015-9672-8
  • Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P., & Gell, P. (2015). A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1–43. https://doi.org/10.1890/ES14-00534.1
  • Hu, K., Wang, S., Li, H., Huang, F., & Li, B. (2014). Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing. Geoderma, 226-227, 54–63. https://doi.org/10.1016/j.geoderma.2014.03.001
  • Huang, S. W., Jin, J. Y., Yang, L. P., & Bai, Y. L. (2006). Spatial variability of soil nutrients and influencing factors in a vegetable production area of Hebei Province in China. Nutrient Cycling in Agroecosystems, 75(1), 201–212. https://doi.org/10.1007/s10705-006-9027-9
  • Hussain, S. (2018). Land use/land cover classification by using satellite NDVI tool for sustainable water and climate change in Southern Punjab. COMSATS Univ. Islamabad. MS thesis. https://doi.org/10.13140/RG.2.2.32363.69923.
  • Hussain, S., Ahmad, A., Wajid, A., Khaliq, T., Hussain, N., Mubeen, M., & Nasim, W. (2020). Irrigation scheduling for cotton cultivation. In Shakeel A, and Mirza H (Eds.,), Cotton production and uses (pp. 59–80). Springer.
  • Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Ching-Lai. H & Kwangsun. Y (Eds.,),Multiple attribute decision making (pp. 58–191). Springer.
  • Hyandye, C., & Martz, L. W. (2017). Markovian and cellular automata land-use change predictive model of the usangu catchment. International Journal of Remote Sensing, 38(1), 64–81. https://doi.org/10.1080/01431161.2016.1259675
  • Ige, S. O., Ajayi, V. O., Adeyeri, O. E., & Oyekan, K. S. A. (2017). Assessing remotely sensed temperature-humidity index as human comfort indicator relative to land use land cover change in Abuja, Nigeria. Spatial Information Research, 25(4), 523–533. https://doi.org/10.1007/s41324-017-0118-2
  • Imanudin, M., Armanto, M.E, S., & Susanto, R. H. (2011). Developing seasonal operation water table management in tidal lowland reclamations areas at South Sumatra Indonesia. Journal of Tropical Soils, 16(3), 233–244. https://doi.org/10.5400/jts.2011.16.3.233
  • Iqbal, F. (2010). Remote sensing and GIS application for site-specific agriculture; agriculture: Agro-informatics for sustainable agriculture. Beau Basin: VDM Verlag Dr. Müller, 1, 3–978.
  • Isidoro, D., & Grattan, S. R. (2011). Predicting soil salinity in response to different irrigation practices, soil types, and rainfall scenarios. Irrigation Science, 29(3), 197–211. doi:10.1007/s00271-010-0223-7.
  • Islam, M., D, S., & Ahmed, R. (2011). Land-use change prediction in Dhaka city using GIS-aided markov chain modeling. Journal of Life Earth Science, 6, 81–89. https://doi.org/10.3329/jles.v6i0.9726
  • Jaji, M. O., Bamgbose, O., Odukoya, O. O., & Arowolo, T. A. (2007). Water quality assessment of Ogun river, south west Nigeria. Environmental Monitoring and Assessment, 133(1), 473–482. https://doi.org/10.1007/s10661-006-9602-1
  • Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (Third ed.). Pearson Prentice Hall.
  • Kananke, T. C., Wansapala, J., & Gunaratne, A. (2015). Pb and Cr contaminations of irrigation water, soils, and green leafy vegetables collected from different areas of Colombo district, Sri Lanka. Pakistan Journal of Nutrition, 14(9), 60–593. https://doi.org/10.3923/pjn.2015.593.602
  • Khanal, S., KC, K., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12(22), 3783. https://doi.org/10.3390/rs12223783
  • Kumar, A., & Yadav, D. S. (2005). Influence of continuous cropping and fertilization on nutrient availability and productivity of alluvial soil. Journal of the Indian Society of Soil Science, 53(2), 194–198.
  • Lai, Y. J., Liu, T. Y., & Hwang, C. L. (1994). Topsis for MODM. European Journal of Operational Research, 76(3), 486–500. https://doi.org/10.1016/0377-2217(94)90282-8
  • Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19(4), 573–592. https://doi.org/10.2307/1468118
  • Leena, M. M., Silvia, M. G., Vinitha, K., Moses, J. A., & Anandharamakrishnan, C. (2020). Synergistic potential of nutraceuticals: Mechanisms and prospects for futuristic medicine. Food & Function, 11(11), 9317–9337. https://doi.org/10.1039/D0FO02041A
  • Leinweber, P., & Schulten, H. R. (1998). Nonhydrolyzable organic nitrogen in soil size separates from long‐term agricultural experiments. Soil Science Society of America Journal, 62(2), 383–393. https://doi.org/10.2136/sssaj1998.03615995006200020014x
  • Li, W., Dong, R., Fu, H., Wang, J., Yu, L., & Gong, P. (2020). Integrating google earth imagery with landsat data to improve 30-m resolution land cover mapping. Remote Sensing of Environment, 237, 111563. doi:10.1016/j.rse.2019.111563.
  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote Sensing and Image Interpretation (5th ed.). John Wiley & Sons Inc.
  • Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PloS one, 13(7), e0200493. https://doi.org/10.1371/journal.pone.0200493
  • Liu, H., & Zhou, Q. (2004). Accuracy analysis of remote sensing change detection by rule-based rationality evaluation with post-classification comparison. International Journal of Remote Sensing, 25(5), 1037–1050. https://doi.org/10.1080/0143116031000150004
  • Lobell, D. B., Lesch, S. M., Corwin, D. L., Ulmer, M. G., Anderson, K. A., Potts, D. J., Baltes, M. J., Matos, M. R., & Baltes, M. J. (2010). Regional‐scale assessment of soil salinity in the Red River Valley using multi‐year MODIS EVI and NDVI. Journal of Environmental Quality, 39(1), 35–41. https://doi.org/10.2134/jeq2009.0140
  • Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Wang, T., Ferrier, R. C., Li, H., Luo, W., & Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–15. https://doi.org/10.1016/j.envint.2014.12.010
  • Ma, C., Zhang, G. Y., Zhang, X. C., Zhao, Y. J., & Li, H. Y. (2012). Application of Markov model in wetland change dynamics in Tianjin Coastal Area, China. Procedia Environmental Sciences, 13, 252–262.
  • Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Liu, Y., Chang, X., & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272. https://doi.org/10.1016/j.chemosphere.2015.08.026
  • Mallick, J., Talukdar, S., Pal, S., & Rahman, A. (2021). A novel classifier for improving wetland mapping by integrating image fusion techniques and ensemble machine learning classifiers. Ecological Informatics, 65, 101426
  • McFeeters, S. K. (1996). The use of normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • McLean, E. O. (1982). pH and lime requirements. in: Page ALE, editor. methods of soil analysis. Madison, WI, USA: American Society of Agronomists Inc. natural color image. In Poster session 3, GIS development proceedings, ACRS.
  • Mitchell, S. A. (2013). The status of wetlands, threats and the predicted effect of global climate change: The situation in Sub-Saharan Africa. Aquatic Sciences, 75(1), 95–112. https://doi.org/10.1007/s00027-012-0259-2
  • Mohajane, M., Essahlaoui, A., Oudija, F., Hafyani, M. E., Hmaidi, A. E., Ouali, A. E., Giovanni Randazzo, G., & Teodoro, A. C. (2018). Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments, 5(12), 131. https://doi.org/10.3390/environments5120131
  • Mohanrajan, S. N., & Loganathan, A. (2022). Novel Vision Transformer–Based Bi-LSTM Model for LU/LC Prediction—Javadi Hills, India. Applied Sciences, 12(13), 6387.
  • Mzuku, M., Khosla, R., Reich, R., Inman, D., Smith, F., & MacDonald, L. (2005). Spatial variability of measured soil properties across site‐specific management zones. Soil Science Society of America Journal, 69(5), 1572–1579. https://doi.org/10.2136/sssaj2005.0062
  • Nkwunonwo, U. C., Odika, P. O., & Onyia, N. I. (2020). A review of the health implications of heavy metals in food chain in Nigeria. The Scientific World Journal, 2020, 1–11. 2020 https://doi.org/10.1155/2020/6594109
  • Obiora, S. C., Chukwu, A., & Davies, T. C. (2016). Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. Journal of African Earth Sciences, 116, 182–189. https://doi.org/10.1016/j.jafrearsci.2015.12.025
  • Ochege, F. U., & Okpala-Okaka, C. (2017). Remote sensing of vegetation cover changes in the humid tropical rainforests of Southeastern Nigeria (1984–2014). Cogent Geoscience, 3(1), 1307566. https://doi.org/10.1080/23312041.2017.1307566
  • Ojo, S., Olusina, J. O., & Ngene, B. U. (2022). Mapping of Land use and change detection analysis of yewa south local government of Ogun State, Nigerian. Journal of Geomatics, 16(1): 14-22.
  • Oke, A. O., Sangodoyin, A. Y., & Omodele, T. (2017). Classification of river water quality in Ogun and Ona River Basins, Nigeria using CCME framework: Implications for sustainable environmental management. Cogent Environmental Science, 3(1), 1295696. https://doi.org/10.1080/23311843.2017.1295696
  • Okoye, J., & Oni, K. (2017). Promotion of indigenous food preservation and processing knowledge and the challenge of food security in Africa. Journal of Food Security, 5(3), 75–877. doi:10.12691/jfs-5-3-3.
  • Olson, D. L. (2004). Comparison of weights in TOPSIS models. Mathematical and Computer Modelling, 40(7–8), 721–727. https://doi.org/10.1016/j.mcm.2004.10.003
  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1
  • Orimoloye, I. R., Kalumba, A. M., Mazinyo, S. P., & Nel, W. (2020). Geospatial analysis of wetland dynamics: Wetland depletion and biodiversity conservation of Isimangaliso Wetland, South Africa. Journal of King Saud University-Science, 32(1), 90–96. https://doi.org/10.1016/j.jksus.2018.03.004
  • Oshunsanya, S. O. (2018). Introductory chapter: relevance of soil pH to agriculture, soil pH for nutrient availability and crop performance. IntechOpen. https://www.intechopen.com/books/soil-ph-for-nutrient-availability-and-crop-performance/introductory-chapter-relevance-of-soil-phto-agriculture
  • Özkan, B., Dengiz, O., & Demirağ Turan, İ. (2019). Site suitability assessment and mapping for rice cultivation using multi-criteria decision analysis based on fuzzy-AHP and TOPSIS approaches under semi humid ecological condition in delta plain. Paddy and Water Environment, 17(4), 665–676. https://doi.org/10.1007/s10333-019-00692-8
  • Pal, S., & Akoma, O. C. (2009). Water scarcity in wetland area within kandi block of West Bengal: A hydro-ecological assessment. Ethiopian Journal of Environmental Studies and Management, 2(3):1-12. https://doi.org/10.4314/ejesm.v2i3.48260
  • Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B., & Simmons, C. T. (2020). Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: Case studies across Iran. Scientific Reports, 10(1), 1–19. https://doi.org/10.1038/s41598-020-74561-4
  • Pontius, R. G., Jr., & Millones, M. (2011). Death to Kappa: The birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429. https://doi.org/10.1080/01431161.2011.552923
  • Purnamasari, R. A., Ahamed, T., & Noguchi, R. (2019). Land suitability assessment for cassava production in Indonesia using GIS, remote sensing, and multi-criteria analysis. Asia-Pacific Journal of Regional Science, 3(1), 1–32. https://doi.org/10.1007/s41685-018-0079-z
  • Radočaj, D., Jurišić, M., & Antonić, O. (2021). Determination of soil C: N suitability zones for organic farming using an unsupervised classification in eastern Croatia. Ecological Indicators, 123, 107382. https://doi.org/10.1016/j.ecolind.2021.107382
  • Rao, Y., Xu, Y., Zhang, J., Guo, Y., & Fu, M. (2018). Does subclassified industrial land have a characteristic impact on land surface temperatures? Evidence for and implications of coal and steel processing industries in a Chinese mining city. Ecological indicators, 89, 22–34.
  • Rasul, A., Balzter, H., & Smith, C. (2015). Spatial variation of the daytime surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from landsat 8. Urban Climate, 14, 176–186. https://doi.org/10.1016/j.uclim.2015.09.001
  • Raza, S. M. H., Mahmood, S. A., Khan, A. A., & Liesenberg, V. (2018). Delineation of potential sites for rice cultivation through multi-criteria evaluation (MCE) using remote sensing and GIS. International Journal of Plant Production, 12(1), 1–11. https://doi.org/10.1007/s42106-017-0001-z
  • Rezaei, S. A., & Gilkes, R. J. (2005). The effects of landscape attributes and plant community on soil chemical properties in rangelands. Geoderma, 125(1–2), 167–176. https://doi.org/10.1016/j.geoderma.2004.07.010
  • Robertson, G. P. (2008). In: GS+: geostatistics for the environmental sciences. Gamma Design Software. Plainwell.
  • Rogers, K., Saintilan, N., & Copeland, C. (2012). Modeling wetland surface elevation dynamics and its application to forecasting the effects of sea-level rise on estuarine wetlands. Ecological Modelling, 244, 148–157. https://doi.org/10.1016/j.ecolmodel.2012.06.014
  • Rouse, J. W., Haas, R. H., Scheel, J. A., & Deering, D. W. (1974) ‘Monitoring vegetation systems in the great plains with ERTS.’ Proceedings, 3rd Earth Resource Technology Satellite (ERTS) symposium, vol. 1, p. 48–62.
  • Saaty, T.L. (1980). The analytic hierarchy process. wetland assessment and restoration potential in the Norwood Young America watershed. Retrieved February 4, 2022 from http:www.gisSmumnedu.research-atsmu/gradpapers.shtml.
  • Safadoust, A., Doaei, N., Mahboubi, A. A., Mosaddeghi, M. R., Gharabaghi, B., Voroney, P., & Ahrens, B. (2016). Long-term cultivation and landscape position effects on aggregate size and organic carbon fractionation on surface soil properties in the semi-arid region of Iran. Arid Land Research and Management, 30(4), 345–361. https://doi.org/10.1080/15324982.2015.1016244
  • Santra, P., Chopra, U. K., & Chakraborty, D. (2008). Spatial variability of soil properties and its application in predicting surface map of hydraulic parameters in an agricultural farm. Current Science. 95(7):937–945. http://www.jstor.org/stable/241031935
  • Savant, N. K., & De Datta, S. K. (1982). Nitrogen transformations in wetland rice soils. In Advances in agronomy, 35 (pp. 241–302). doi: 10.1016/S0065-2113(08)60327-2. Academic Press.
  • Schloeder, C. A., Zimmerman, N. E., & Jacobs, M. J. (2001). Comparison of methods for interpolating soil properties using limited data. Soil Science Society of America Journal, 65(2), 470–479. https://doi.org/10.2136/sssaj2001.652470x
  • Senjobi, B. A., & Ogunkunle, O. A. (2010). Effect of land use on soil degradation and soil productivity decline on alfisols and ultisols in Ogun State in Southwestern, Nigeria. Agriculturae Conspectus Scientificus, 75(1), 9–19. https://hrcak.srce.hr/53003.
  • Shaddad, S. M., Buttafuoco, G., Elrys, A., & Castrignanò, A. (2019). Site-specific management of salt-affected soils: A case study from Egypt. Science of the Total Environment, 688, 153–161. https://doi.org/10.1016/j.scitotenv.2019.06.214
  • Shanmugapriya, P., Rathika, S., Ramesh, T., & Janaki, P. (2019). Applications of remote sensing in agriculture-A Review. International Journal of Current Microbiology and Applied Sciences, 8(1), 2270–2283. https://doi.org/10.20546/ijcmas.2019.801.238
  • Sharma, S., Phartiyal, M., Madhav, S., & Singh, P. (2021). Global wetlands: Categorization, distribution and global scenario. Wetlands Conservation: Current Challenges and Future Strategies, 1–16. https://doi.org/10.1002/9781119692621.ch1.
  • Skakun, S., Franch, B., Vermote, E., Roger, J. C., Becker-Reshef, I., Justice, C., & Kussul, N. (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information, and a Gaussian mixture model. Remote Sensing of Environment, 195, 244–258. https://doi.org/10.1016/j.rse.2017.04.026
  • Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., and Pugh, T. A. (2016). Global change pressures on soils from land use and management. Global Change Biology, 22(3), 1008–1028
  • Smyth, A. J., & Montgomery, R. F. (1962). Soils and land use in central Western Nigeria ( pp. 217). Western Nigerian Government Press.
  • Spurgeon, D. J., Keith, A. M., Schmidt, O., Lammertsma, D. R., & Faber, J. H. (2013). Land-use and land-management change: Relationships with earthworm and fungi communities and soil structural properties. BMC Ecology, 13(1), 1–13. https://doi.org/10.1186/1472-6785-13-46
  • Staff, S. S. (1999). Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Agriculture handbook, 436.
  • Sys, C., Van Ranst, E., & Debaveye, J. (1991). Land evaluation part I principles in land evaluation and crop production calculations. general administration for development cooperation (GADC). Agricultural Publications.
  • Tariq, A., & Shu, H. (2020). CA-markov chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of faisalabad, Pakistan. Remote Sensing, 12(20), 3402. https://doi.org/10.3390/rs12203402.
  • Taubenböck, H., Wiesner, M., Felbier, A., Marconcini, M., Esch, T., & Dech, S. (2014). New dimensions of urban landscapes: The spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Applied Geography, 47, 137–153. https://doi.org/10.1016/j.apgeog.2013.12.002
  • Temür, G. (2016). Bazı Çeltik (Oryza sativa L.) Çeşitlerinde silisyumun verim, verim öğeleri ve kaliteye etkilerinin belirlenmesi. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü.
  • Tepanosyan, G., Muradyan, V., Hovsepyan, A., Pinigin, G., Medvedev, A., & Asmaryan, S. (2021). Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Building and Environment, 187, 107390. https://doi.org/10.1016/j.buildenv.2020.107390
  • Theobald, D. M., & Hobbs, N. T. (1998). Forecasting rural land-use change: A comparison of regression-and spatial transition-based models. Geographical and Environmental Modelling, 2, 65–82.
  • Tobore, A., Adedeji, O., Senjobi, B., & Olalere, S. (2021). Geospatial suitability assessment of wetland soils for rice production in federal university of agriculture abeokuta, Ogun State, Nigeria. Discovery Agriculture, 7(17), 1–25.
  • Tobore, A., Senjobi, B., & Oyerinde, G. (2021). Spatio temporal analysis and simulation pattern of land use and land cover change in odeda peri-urban of Ogun State. Nigeria Jordan Journal of Earth, and Environmental Sciences, 12(4), 326–336.
  • Tobore, A., Senjobi, B., Ogundiyi, T., & Bamidele, S. (2021b). Geospatial assessment of wetland soils for rice production in Ajibode using geospatial techniques. Open Geosciences, 13(1), 310–320. https://doi.org/10.1515/geo-2020-0227
  • Tsu Wei, T., Marthandan, G., Yee‐Loong Chong, A., Ooi, K., & Arumugam, S. (2009). What drives Malaysian m‐commerce adoption? An empirical analysis. Industrial Management & Data Systems, 109(3), 370–388. https://doi.org/10.1108/02635570910939399
  • UN Development Programme (2010). Human development report (2010). The real wealth of nations: Pathways to human development. Online available at: http://hdr.undp
  • USDA-NRCS. (1994). Inherent factors affecting soil phosphorus.
  • Ustaoglu, E., Sisman, S., & Aydınoglu, A. C. (2021). Determining agricultural suitable land in peri-urban geography using GIS and Multi-Criteria Decision Analysis (MCDA) techniques. Ecological Modelling, 455, 109610. https://doi.org/10.1016/j.ecolmodel.2021.109610
  • Verhoeven, J. T., & Setter, T. L. (2010). Agricultural use of wetlands: Opportunities and limitations. Annals of Botany, 105(1), 155–163. https://doi.org/10.1093/aob/mcp172
  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003
  • Wang, Z. Q. (1999). Geostatistics applied in ecology. Science Press. 109126. in Chinese.109126. in Chinese.
  • Wang, S. W., Gebru, B. M., Lamchin, M., Kayastha, R. B., & Lee, W. K. (2020). Land use and land cover change detection and prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability,12(3925): 18–122. doi:10.3390/su12093925.
  • Western, A. W., Zhou, S. L., Grayson, R. B., McMahon, T. A., Blöschl, G., & Wilson, D. J. (2004). Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, 286(2), 113–134. https://doi.org/10.1016/j.jhydrol.2003.09.014
  • Wilding, L. P. (1985). Spatial variability: its documentation, accomodation and implication to soil surveys. Soil spatial variability, Las Vegas NV, 30 (pp. 166–194).
  • Wojcicki, K. J., & Woskowicz-Slezak, B. (2015). Anthropogenic causes of wetland loss and degradation in the lower Kłodnica valley (southern Poland). Environmental and Socio-Economic Studies, 3(4), 20–29. https://doi.org/10.1515/environ-2015-0070
  • Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y., & Huang, Z. (2004). Evaluating urban expansion and land-use change in Shijiazhuang, China by using GIS and remote sensing. Landscape and Urban Planning, 75(6), 69–80. https://doi.org/10.1016/j.landurbplan.2004.12.005
  • Xie, Z., Huete, A., Ma, X., Restrepo-Coupe, N., Devadas, R., Clarke, K., & Lewis, M. (2016). Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. Journal of Hydrology, 543, 818–831. https://doi.org/10.1016/j.jhydrol.2016.11.001
  • Xu, H. (2006). Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
  • Xu, T., Weng, B., Yan, D., Wang, K., Li, X., Bi, W., Li, M., Cheng, X., & Liu, Y. (2019). Wetlands of international importance: Status, threats, and future protection. International Journal of Environmental Research and Public Health, 16(10), 1818. https://doi.org/10.3390/ijerph16101818
  • Zabel, F., Putzenlechner, B., & Mauser, W. (2014). Global agricultural land resources–a high-resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PloS one, 9(9), e107522. https://doi.org/10.1371/journal.pone.0107522
  • Zhao, J., Zhang, H., Zhang, Z., Guo, X., Li, X., & Chen, C. (2015). Spatial and temporal changes in vegetation phenology at middle and high latitudes of the Northern Hemisphere over the past three decades. Remote Sensing, 7(8), 10973–10995. https://doi.org/10.3390/rs70810973
  • Zolekar, R. B., & Bhagat, V. S. (2015). Multi-criteria land suitability analysis for agriculture in the hilly zone: remote sensing and GIS approach. Computers and Electronics in Agriculture, 118, 300–321. https://doi.org/10.1016/j.compag.2015.09.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.