549
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Behaviour of Solani sand under monotonic and cyclic loading: experiments and finite element simulations

& ORCID Icon
Pages 729-742 | Received 22 Jan 2021, Accepted 05 Aug 2021, Published online: 24 Aug 2021

References

  • Arab, A., M. Belkhatir, and M. Sadek. 2016. “Saturation Effect on Behaviour of Sandy Soil under Monotonic and Cyclic Loading: A Laboratory Investigation.” Geotechnical and Geological Engineering 34 (1): 347–358.
  • ASTM D3999/D3999M-91. 2011. Standard Test Method for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus. American Society for Testing Materials Int., West Conshohocken, Pennsylvania, United States.
  • ASTM D4767. 2011. Standard Test Method for Consolidated Undrained Triaxial Compression Test. American Society for Testing Materials Int., West Conshohocken, Pennsylvania, United States.
  • Beaty, M. H., and P. M. Byrne. 2011. UBCSAND Constitutive Model Version 904aR, Itasca UDM Web Site, 69. Vancouver, British Columbia: University of British Columbia.
  • Bhatnagar, S., S. Kumari, and V. A. Sawant. 2016. “Numerical Analysis of Earth Embankment Resting on Liquefiable Soil and Remedial Measures.” International Journal of Geomechanics 16 (1): 1–13. doi:https://doi.org/10.1061/(ASCE)GM.1943-5622.0000501.
  • Boulanger, R. W., and K. Ziotopoulou. 2013. “Formulation of a Sand Plasticity Plane-Strain Model for Earthquake Engineering Applications.” Soil Dynamics and Earthquake Engineering 53: 254–267. doi:https://doi.org/10.1016/j.soildyn.2013.07.006.
  • Byrne, P. M. 1991. “A Cyclic Shear-Volume Coupling and Pore Pressure Model for Sand.” 2nd International Conference on Recent Advances in Geotech. Earthquake Engg. and Soil Dynamics, St. Louis, Missouri, United states.
  • Chakrabortty, P., and A. Das. 2018. “Effect of Soil Grain Size on Liquefaction Strength of Sandy Soil.” Geohazards, Vol. 86, 539–554. Springer, Singapore. doi:https://doi.org/10.1007/978-981-15-6233-4_38.
  • Choudhary, S. S., B. K. Maheshwari, and A. M. Kaynia. 2010. “Liquefaction Resistance of Solani Sand under Cyclic Loads.” Proceedings of the Indian Geotechnical Conference, Bombay, India, December.
  • Cui, J., Y. Liu, B. Xie, and W. Zhang 2019. “Mechanical Properties and Microcosmic Analysis of Undisturbed Loess in Xining Area with Different Moisture Content.” In Proceedings of the IOP Conference Series of the International Conference on Civil and Hydraulic Engineering: Earth and Environmental Science Graz, Austria, September. 304 ( 3), IOP Publishing. doi:https://doi.org/10.1088/1755-1315/304/3/032036.
  • Dafalias, Y. F., and M. T. Manzari. 2004. “Simple Plasticity Sand Model Accounting for Fabric Change Effects.” Journal of Engineering Mechanics 130 (6): 622–634. doi:https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622).
  • Dash, H. K., and T. G. Sitharam. 2011. “Cyclic Liquefaction and Pore Pressure Response of Sand-Silt Mixtures.” Geomechanics and Engineering 3 (2): 83–108. doi:https://doi.org/10.12989/gae.2011.3.2.083.
  • El Takch, A., A. Sadrekarimi, and M. H. El Naggar. 2016. “Cyclic Resistance and Liquefaction Behaviour of Silt and Sandy Silt Soils.” Soil Dynamics and Earthquake Engineering 83: 98–109. doi:https://doi.org/10.1016/j.soildyn.2016.01.004.
  • Esfeh, P. K., and A. M. Kaynia. 2019. “Numerical Modeling of Liquefaction and Its Impact on Anchor Piles for Floating Offshore Structures.” Soil Dynamics and Earthquake Engineering 127: 1–21. doi:https://doi.org/10.1016/j.soildyn.2019.105839.
  • Galavi, V., A. Petalas, and R. B. J. Brinkgreve. 2013. “Finite Element Modelling of Seismic Liquefaction in Soils.” Geotech. Engineering Journal of the SEAGS and AGSSEA 44 (3): 55–64.
  • Golmaei, S. H., and M. Boulon. 2012. “Comparison between Experimental and Finite Element Modelling Data for Triaxial Undrained Cyclic Tests in Compression on HOSTUM Sand.” International Journal of Civil and Structural Engineering 3 (2): 429–442.
  • Govindaraju, L. 2005. “Liquefaction and Dynamic Properties of Sandy Soils.” Ph.D. Dissertation, Dept. of Civil Engg., Bangalore, India: Indian Institute of Sciences.
  • Griggs, D., and J. Handin. 1960. “Observations on Fracture and a Hypothesis of Earthquakes.” Rock Deformation: Geological Society of America Memoir 79: 39–104.
  • Guo, X., C. Peng, W. Wu, and Y. Wang. 2016. “A Hypoplastic Constitutive Model for Debris Materials.” Acta Geotechnica 11 (6): 1217–1229. doi:https://doi.org/10.1007/s11440-016-0494-0.
  • Hussain, M., and A. Sachan. 2020. “Effect of Loading Conditions and Stress History on Cyclic Behavior of Kutch Soil.” Geomechanics and Geoengineerring 15 (4): 233–251. doi:https://doi.org/10.1080/17486025.2019.1635716.
  • IS 1893 (Part 1). 2016. Criteria for Earthquake Resistant Design of Structures. New Delhi, India: Bureau of Indian Standards.
  • Ji, E., J. Zhu, S. Chen, and W. Jin. 2017. “Analytical Solution and Experimental Study of Membrane Penetration in Triaxial Test.” Geomechanics and Geoengineering 13 (6): 1027–1044. doi:https://doi.org/10.12989/gae.2017.13.6.1027.
  • Kirar, B., and B. K. Maheshwari. 2018. “Dynamic Properties of Soils at Large Strains in Roorkee Region Using Field and Laboratory Tests.” Indian Geotechnical Journal 48 (1): 125–141.
  • Kramer, S. L. 1996. Geotechnical Earthquake Engineering. Pearson Education India.
  • Kramer, S. L., and H. B. Seed. 1988. “Initiation of Soil Liquefaction under Static Loading Conditions.” Journal of Geotechnical Engineering 114 (4): 412–430. doi:https://doi.org/10.1061/(ASCE)0733-9410(1988)114:4(412.
  • Lacasse, S., and T. Berre 1988. “State-of-the-Art Paper: Triaxial Testing Methods for Soils.” In Advanced Triaxial Testing of Soil and Rock, American Society for Testing Materials International. West Conshohocken, Pennsylvania, United States.
  • Ladd, R. S., and R.S Ladd. 1978. “Preparing Test Specimens Using Undercompaction.” Geotech. Testing Journal, ASTM International 1 (1): 16–23. doi:https://doi.org/10.1520/GTJ10364J.
  • Madabhushi, S. S., S. K. Haigh, and G. S. Madabhushi. 2018. “LEAP-GWU-2015: Centrifuge and Numerical Modelling of Slope Liquefaction at the University of Cambridge.” Soil Dynamics and Earthquake Engineering 113: 671–681. doi:https://doi.org/10.1016/j.soildyn.2016.11.009.
  • Maheshwari, B. K., S. S. Kale, and A. M. Kaynia. 2013. “Effects of Cyclic Loads on Dynamic Properties of Soils in the Ganga Basin.” International Journal of Geotechnical Engineering 7 (2): 149–155. doi:https://doi.org/10.1179/1938636213Z.00000000026.
  • Maheshwari, B. K., H. P. Singh, and S. Saran. 2012. “Effects of Reinforcement on Liquefaction Resistance of Solani Sand.” Journal of Geotechnical and Geoenvironmental Engineering 138 (7): 831–840. doi:https://doi.org/10.1007/s11440-016-0494-0.
  • Makra, A. 2013. “Evaluation of the UBC3D-PLM Constitutive Model for Prediction of Earthquake Induced Liquefaction on Embankment Dams.” M.Sc. Thesis, Netherlands: Delft University of technology.
  • Martin, B. E., and O. Cazacu. 2013. “Experimental and Theoretical Investigation of the High Pressure, Undrained Response of a Cohesionless Sand.” International Journal for Numerical and Analytical Methods in Geomechanics 37 (14): 2321–2347. doi:https://doi.org/10.1002/nag.2143.
  • Martin, G.R., W. L. Finn, and H. B. Seed. 1975. “Fundamentals of Liquefaction under Cyclic Loading.” Journal of Geotechnical & Geoenvironmental Engineering 101 (5): 423–438.
  • Mercado, J. A. 2016. “Simulation of Liquefaction Induced Damage of the Port of Long Beach California Using the UBC3D-PLM Model.” Ph.D. Dissertaion, Universidad Nacional de Colombia-Sede Medellín: Columbia.
  • Muley, P., B. K. Maheshwari, and D. K. Paul. 2015. “Liquefaction Potential of Roorkee Region Using Field and Laboratory Tests.” International Journal of Geosynthetics and Ground Engineering 1 (4): 1–13. doi:https://doi.org/10.1007/s40891-015-0038-y.
  • Nabili, S., Y. Jafarian, and M. H. Baziar. 2008. “Evaluation of the Martin Et Al. (1975) Pore Pressure Build up Model Using Laboratory Test Data.” In Proceedings of 6th Int. Conf. on Case Histories in Geotech. Engg.: Arlington, Virginia.
  • Petalas, A., V. Galavi, and R. B. J. Brinkgreve. 2012. “Validation and Verification of a Practical Constitutive Model for Predicting Liquefaction in Sands.” In Proceedings of 22nd European Young Geotechnical Engineering Conference. Gothenburg: Sweden.
  • Petalas, A., V. Galavi, and R. B. J. Brinkgreve. 2013. “A 3D Practical Constitutive Model for Predicting Seismic Liquefaction in Sands.” In Proceedings of Conference on Installation Effects in Geotechnical Engineering, London: Taylor & Francis Group.
  • PLAXIS-3D. 2018. PLAXIS-3D: User Manual, Reference Manual and Material Model Manual. Plaxis BV: Delft, Netherland.
  • Puebla, H., P. M. Byrne, and R. Phillips. 1997. “Analysis of CANLEX Liquefaction Embankments: Prototype and Centrifuge Models.” Canadian Geotechnical Journal 34 (5): 641–657. doi:https://doi.org/10.1139/t97-034.
  • Puppala, A. J., S. Saride, and S. Chomtid. 2009. “Experimental and Modeling Studies of Permanent Strains of Subgrade Soils.” Journal of Geotechnical and Geoenvironmental Engineering 135 (10): 1379–1389. doi:https://doi.org/10.1061/(ASCE)GT.1943-5606.0000163.
  • Rahman, T., and G. Schreppers. 2014. “Extension of the UBC Sand Model to 3-D Formulation for Implicit Time-Integration.” Proceedings of 8th European Conference on Numerical Methods in Geotechnical Engineering 2: 1289–1294.
  • Schanz, T., P. A. Vermeer, and P. G. Bonnier. 2019. “The Hardening Soil Model: Formulation and Verification.” In Beyond 2000 in Computational Geotechnics (1st Edition), 281–296. Routledge, CRC Press, Taylor & Francis Group.
  • Seed, H. B., and I. M. Idriss. 1971. “Simplified Procedure for Evaluating Soil Liquefaction Potential.” Journal of the Soil Mechanics and Foundations Division 97: 1249–1273. doi:https://doi.org/10.1061/JSFEAQ.0001662.
  • Seed, H. B., I. M. Idriss, and I. Arango. 1983. “Evaluation of Liquefaction Potential Using Field Performance Data.” Journal of Geotechnical Engineering 109 (3): 458–482. doi:https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
  • Seed, H. B., and K. L. Lee. 1966. “Liquefaction of Saturated Sands during Cyclic Loading.” Journal of Soil Mechanics & Foundations Division, 92 (ASCE# 4972 Proceeding) 92 (SM6): 105–135.
  • Seed, H. B., K. Tokimatsu, L. F. Harder, and R. M. Chung. 1985. “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations.” Journal of Geotechnical Engineering 111 (12): 1425–1445. doi:https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425).
  • Sehgal, J. L., and L. P. Sohan. 1992. “Sandy Soils of India.” Agropedology 2: 1–14.
  • Sitharam, T. G., L. Govindaraju, and A. Sridharan. 2004. “Dynamic Properties and Liquefaction Potential of Soils.” Current Science, Special Section: Geotechnics and Earthquake Hazard 87 (10): 1370–1378.
  • Sitharam, T. G., and J. S. Vinod. 2008. “Numerical Simulation of Liquefaction and Pore Pressure Generation in Granular Materials Using DEM.” International Journal of Geotechnical Engineering 2 (2): 103–113. doi:https://doi.org/10.3328/IJGE.2008.02.02.103-113.
  • Sitharam, T. G., J. S Vinod, and B. V. Ravishankar. 2009. “Post-liquefaction Undrained Monotonic Behaviour of Sands: Experiments and DEM Simulations.” Géotechnique 59 (9): 739–749. doi:https://doi.org/10.1680/geot.7.00040.
  • Sonmezer, Y. B. 2019. “Energy-Based Evaluation of Liquefaction Potential of Uniform Sands.” Geomechanics and Engineering 17 (2): 145–156. doi:https://doi.org/10.12989/gae.2019.17.2.145.
  • Toki, S., F. Tatsuoka, S. Miura, Y. Yoshimi, S. Yasuda, and Y. Makihara. 1986. “Cyclic Undrained Triaxial Strength of Sand by a Cooperative Test Program.” Soils and Foundations 26 (3): 117–128. doi:https://doi.org/10.3208/sandf1972.26.3_117.
  • Tsegaye, A. 2010. “Plaxis Liquefaction Model: External Report.” PLAXIS knowledge base. www.plaxis.nl
  • Vaid, Y. P., and S. Sivathayalan. 1996. “Static and Cyclic Liquefaction Potential of Fraser Delta Sand in Simple Shear and Triaxial Tests.” Canadian Geotechnical Journal 33 (2): 281–289. doi:https://doi.org/10.1139/t96-007.
  • Yang, J., and B. B Dai. 2011. “Is the Quasi-steady State A Real Behaviour? A Micromechanical Perspective.” Géotechnique 61 (2): 175–183. doi:https://doi.org/10.1680/geot.8.P.129.
  • Yin, J. H., and J. Graham. 1996. “Elastic Visco-Plastic Modelling of One-Dimensional Consolidation.” Geotechnique 46 (3): 515–527. doi:https://doi.org/10.1680/geot.1996.46.3.515.
  • Zhou, L., X. Chu, X. Zhang, and Y. Xu. 2016. “Numerical Investigations on Breakage Behaviour of Granular Materials under Triaxial Stresses.” Geomechanics and Engineering 11 (5): 639–655. doi:https://doi.org/10.12989/gae.2016.11.5.63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.