575
Views
4
CrossRef citations to date
0
Altmetric
Reviews

SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control

ORCID Icon, ORCID Icon & ORCID Icon

References

  • World Health Organization. Coronavirus (COVID) Dashboard. (accessed on Apr 19, 2022). https://covid19.who.int/info/.
  • WHO. Coronaviruses. 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-press-conference-20apr2020.pdf?sfvrsn=b5656a70_2. Last accessed: 19th Nov 2021.
  • Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-derived natural non-nucleoside analog inhibitors (NNAIs) against RNA-dependent RNA polymerase complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl. 2021;1:1–30. Epub ahead of print. PMID: 34850656. doi:10.1080/19390211.2021.2006387.
  • Krumm ZA, Lloyd GM, Francis CP, Nasif LH, Mitchell DA, Golde TE, Giasson BI, Xia Y. Precision therapeutic targets for COVID-19. Virol J. 2021;18(1):66. doi: 10.1186/s12985-021-01526-y. PMID: 33781287; PMCID: PMC8006140.
  • Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834–47. doi:10.1002/ajh.25829. Epub 2020 May 23. PMID: 32282949; PMCID: PMC7262337.
  • Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for mental health: neuro-redox regulation and neuroprotective effects across the blood-brain barrier with special reference to neuro-COVID-19. J Diet Suppl. 2021:1–35. Epub ahead of print. PMID: 33977807. doi:10.1080/19390211.2021.1922567.
  • Sicari D, Chatziioannou A, Koutsandreas T, Sitia R, Chevet E. Role of the early secretory pathway in SARS-CoV-2 infection. J Cell Biol. 2020;219(9):e202006005. doi:10.1083/jcb.202006005.Erratum in: J Cell Biol. 2020 Sep 7;219(9): PMID: 32725137; PMCID: PMC7480111.
  • Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. doi:10.4081/cp.2020.1271. PMID: 32509258; PMCID: PMC7267810.
  • Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin. 2020;41(12):1539–46. doi:10.1038/s41401-020-00554-8. Epub 2020 Oct 27. PMID: 33110240; PMCID: PMC7588589.
  • Gómez-Pastora J, Weigand M, Kim J, Wu X, Strayer J, Palmer AF, Zborowski M, Yazer M, Chalmers JJ. Hyperferritinemia in critically ill COVID-19 patients: is ferritin the product of inflammation or a pathogenic mediator? Clin Chim Acta. 2020;509:249–51. doi: 10.1016/j.cca.2020.06.033. Epub 2020 Jun 21. PMID: 32579952; PMCID: PMC7306200.
  • Manson JJ, Crooks C, Naja M, Ledlie A, Goulden B, Liddle T, Khan E, Mehta P, Martin-Gutierrez L, Waddington KE, et al. COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study. Lancet Rheumatol. 2020;2(10):e594–e602. Epub 2020 Aug 21. PMID: 32864628; PMCID: PMC7442426. doi:10.1016/S2665-9913(20)30275-7.
  • Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18(9):2103–9. doi:10.1111/jth.14975. Epub 2020 Jul 21. PMID: 32558075; PMCID: PMC7323352.
  • Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578–89. doi: 10.1002/ajh.25982. Epub 2020 Sep 16. PMID: 32857878; PMCID: PMC7674272.
  • Sukhomlin T. Hepcidin is a friend rather than a foe in COVID19-induced complications. Acta Biomed. 2020;91(4):e2020138. doi:10.23750/abm.v91i4.10768. PMID: 33525240; PMCID: PMC7927483.
  • Naidu AS. Redox Life. 1st ed. Yorba Linda (CA): Bio-Rep Media; 2013. ISBN 978–0982445112.
  • Khodour Y, Kaguni LS, Stiban J. Iron-sulfur clusters in nucleic acid metabolism: Varying roles of ancient cofactors. Enzymes. 2019;45:225–56. doi: 10.1016/bs.enz.2019.08.003. PMID: 31627878.
  • Edeas M, Saleh J, Peyssonnaux C. Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303–5. doi:10.1016/j.ijid.2020.05.110. Epub 2020 Jun 2. PMID: 32497811; PMCID: PMC7264936.
  • Winter WE, Bazydlo LA, Harris NS. The molecular biology of human iron metabolism. Lab Med. 2014;45(2):92–102. doi:10.1309/lmf28s2gimxnwhmm. PMID: 24868988.
  • Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev. 2014;114(8):4366–469. doi:10.1021/cr400479b. PMID: 24758379; PMCID: PMC4002152.
  • Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell. 2014;5(10):750–60. doi:10.1007/s13238-014-0083-7. Epub 2014 Jul 8. PMID: 25000876; PMCID: PMC4180463.
  • Burmester T, Hankeln T. What is the function of neuroglobin? J Exp Biol. 2009;212(Pt 10):1423–8. doi:10.1242/jeb.000729. PMID: 19411534.
  • Naidu AS. Lactoferrin. In: A.S. Naidu, editor. Natural food antimicrobial systems. Boca Raton (FL): CRC Press; 2000. p. 17–102. ISBN 0-8493-2047-X.
  • Velasquez J, Wray AA. Deferoxamine. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. PMID: 32491586.
  • Origa R, Galanello R, Ganz T, Giagu N, Maccioni L, Faa G, Nemeth E. Liver iron concentrations and urinary hepcidin in beta-thalassemia. Haematologica. 2007;92(5):583–8. doi:10.3324/haematol.10842. PMID: 17488680.
  • Fleming RE, Ponka P. Iron overload in human disease. N Engl J Med. 2012;366(4):348–59. doi:10.1056/NEJMra1004967. Erratum in: N Engl J Med. 2012 Feb 23;366(8):771. PMID: 22276824.
  • Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life. 2017;69(6):399–413. doi:10.1002/iub.1629. Epub 2017 Apr 6. PMID: 28387022.
  • Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 2018;29(17):1756–73. doi: 10.1089/ars.2017.7176. Epub 2017 Sep 21. PMID: 28793787; PMCID: PMC6208163.
  • Gao G, Li J, Zhang Y, Chang YZ. Cellular iron metabolism and regulation. Adv Exp Med Biol. 2019;1173:21–32. doi:10.1007/978-981-13-9589-5_2. PMID: 31456203.
  • Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics. 2017;9(10):1367–75. doi:10.1039/c7mt00143f. PMID: 28671201.
  • Drakesmith H, Nemeth E, Ganz T. Ironing out ferroportin. Cell Metab. 2015;22(5):777–87. doi:10.1016/j.cmet.2015.09.006. Epub 2015 Oct 1. PMID: 26437604; PMCID: PMC4635047.
  • Kühn LC. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. 2015;7(2):232–43. doi: 10.1039/c4mt00164h. PMID: 25306858.
  • Knutson MD. Iron transport proteins: Gateways of cellular and systemic iron homeostasis. J Biol Chem. 2017;292(31):12735–43. doi: 10.1074/jbc.R117.786632. Epub 2017 Jun 14. PMID: 28615441; PMCID: PMC5546014.
  • Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–41. doi: 10.1152/physrev.00008.2013. PMID: 24137020.
  • Ganz T, Nemeth E. Iron homeostasis in host defense and inflammation. Nat Rev Immunol. 2015;15(8):500–10. Epub 2015 Jul 10. PMID: 26160612; PMCID: PMC4801113. doi:10.1038/nri3863.
  • Wang CY, Babitt JL. Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol. 2016;23(3):189–97. doi:10.1097/MOH.0000000000000236. PMID: 26886082; PMCID: PMC4993159.
  • Drakesmith H, Prentice A. Viral infection and iron metabolism. Nat Rev Microbiol. 2008;6(7):541–52. 52. doi:10.1038/nrmicro1930. PMID: 18864.
  • Bellotti D, Remelli M. Deferoxamine B: a natural, excellent and versatile metal chelator. Molecules. 2021;26(11):3255. PMID: 34071479; PMCID: PMC8198152. doi:10.3390/molecules26113255.
  • Schmidt SM. The role of iron in viral infections. Front Biosci (Landmark Ed). 2020;25(5):893–911. doi:10.2741/4839. PMID: 31585922.
  • Xiong S, She H, Takeuchi H, Han B, Engelhardt JF, Barton CH, Zandi E, Giulivi C, Tsukamoto H. Signaling role of intracellular iron in NF-kappaB activation. J Biol Chem. 2003; May 16278(20):17646–54. Epub 2003 Mar 11. PMID: 12637578. doi:10.1074/jbc.M210905200.
  • Liu W, Zhang S, Nekhai S, Liu S. Depriving iron supply to the virus represents a promising adjuvant therapeutic against viral survival. Curr Clin Microbiol Rep. 2020;1–7. doi:10.1007/s40588-020-00140-w.Epub ahead of print. PMID: 32318324; PMCID: PMC7169647.
  • Jones G, Goswami SK, Kang H, Choi HS, Kim J. Combating iron overload: a case for deferoxamine-based nanochelators. Nanomedicine (Lond). 2020;15(13):1341–56. Epub ahead of print. PMID: 32429801; PMCID: PMC7304435. doi:10.2217/nnm-2020-0038.
  • Sonnweber T, Boehm A, Sahanic S, Pizzini A, Aichner M, Sonnweber B, Kurz K, Koppelstätter S, Haschka D, Petzer V, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. doi:10.1186/s12931-020-01546-2. PMID: 33087116; PMCID: PMC7575703.
  • Khan NA, Akhtar J. Respiratory and ventilator management of COVID-19. J Pak Med Assoc. 2020;70(Suppl 3, 5):S60–S63. doi: 10.5455/JPMA.23. PMID: 32515384.
  • Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjørklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol. 2020;215:108409. doi: 10.1016/j.clim.2020.108409. Epub 2020 Apr 7. PMID: 32276137; PMCID: PMC7139252.
  • Taribagil P, Creer D, Tahir H. COVID’ syndrome. BMJ Case Rep. 2021;14(4):e241485. PMID: 33875508; PMCID: PMC8057566. doi:10.1136/bcr-2020-241485.
  • Debuc B, Smadja DM. Is COVID-19 a new hematologic disease? Stem Cell Rev Rep. 2021;17(1):4–8. doi:10.1007/s12015-020-09987-4. PMID: 32399806; PMCID: PMC7217340.
  • Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, Hou C, Wang H, Liu J, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24(1):422. doi:10.1186/s13054-020-03120-0. PMID: 32660650; PMCID: PMC7356137.
  • Aghagoli G, Gallo Marin B, Katchur NJ, Chaves-Sell F, Asaad WF, Murphy SA. Neurological involvement in COVID-19 and potential mechanisms: a review. Neurocrit Care. 2021;34(3):1062–71. doi:10.1007/s12028-020-01049-4. PMID: 32661794; PMCID: PMC7358290.
  • Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–60. doi:10.1126/science.abd2985. Epub 2020 Oct 20. PMID: 33082293; PMCID: PMC7857391.
  • Mayi BS, Leibowitz JA, Woods AT, Ammon KA, Liu AE, Raja, A,. The role of Neuropilin-1 in COVID-19. PLoS Pathog. 2021;17(1):e1009153. doi:10.1371/journal.ppat.1009153. PMID: 33395426; PMCID: PMC7781380.
  • Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli GM, Shoenfeld Y, Gerli R. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res. 2020;68(4):213–24. doi:10.1007/s12026-020-09145-5. PMID: 32681497; PMCID: PMC7366458.
  • Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843–4. doi:10.1001/jama.2020.3786. PMID: 32159775; PMCID: PMC7066521.
  • Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38(4):633–43. doi:10.1016/j.immuni.2013.04.005. PMID: 23601682; PMCID: PMC3654249.
  • Ferraro E, Germanò M, Mollace R, Mollace V, Malara N. HIF-1, the Warburg effect, and macrophage/microglia polarization potential role in COVID-19 pathogenesis. Oxid Med Cell Longev. 2021;2021:8841911. doi: 10.1155/2021/8841911. PMID: 33815663; PMCID: PMC7987467.
  • Agani FH, Pichiule P, Chavez JC, LaManna JC. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem. 2000;275(46):35863–7. doi:10.1074/jbc.M005643200. PMID: 10961998.
  • Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 2009;9(9):609–17. doi:10.1038/nri2607. PMID: 19704417; PMCID: PMC4343208.
  • Santos SAD, Andrade DRd. HIF-1alpha and infectious diseases: a new frontier for the development of new therapies. Rev Inst Med Trop Sao Paulo. 2017;59:e92. doi:10.1590/S1678-9946201759092. PMID: 29267600; PMCID: PMC5738998.
  • Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: a key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm. 2020;17(1):33. PMID: 33292282. doi:10.1186/s12950-020-00263-3.
  • Zhang C, Wu Z, Li LW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020 May;55(5):105954. doi:10.1016/j.ijantimicag.2020.105954. Epub 2020 Mar 29. PMID: 32234467; PMCID: PMC7118634.
  • Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–91. doi:10.1038/s41577-020-0343-0. Erratum in: Nat Rev Immunol. 2020 Jun 4;: PMID: 32439870; PMCID: PMC7240244.
  • Marchetti M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol. 2020;99(8):1701–7. doi:10.1007/s00277-020-04138-8. Epub 2020 Jun 24. PMID: 32583086; PMCID: PMC7312112.
  • Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol. 2010;184(8):4062–8. doi: 10.4049/jimmunol.0903002. PMID: 20368286; PMCID: PMC4077461.
  • Kelly B, O’Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25(7):771–84. doi: 10.1038/cr.2015.68. Epub 2015 Jun 5. PMID: 26045163; PMCID: PMC4493277.
  • Ryan DG, O’Neill LAJ. Krebs Cycle Reborn in Macrophage Immunometabolism. Annu Rev Immunol. 2020;38:289–313. doi:10.1146/annurev-immunol-081619-104850. Epub 2020 Jan 27. PMID: 31986069.
  • Mehrzadi S, Karimi MY, Fatemi A, Reiter RJ, Hosseinzadeh A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharmacol Ther. 2021;224:107825. doi:10.1016/j.pharmthera.2021.107825. Epub ahead of print. PMID: 33662449; PMCID: PMC7919585.
  • Obach M, Navarro-Sabaté A, Caro J, Kong X, Duran J, Gómez M, Perales JC, Ventura F, Rosa JL, Bartrons R. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem. 2004;279(51):53562–70. doi:10.1074/jbc.M406096200. Epub 2004 Oct 5. PMID: 15466858.
  • Palsson-McDermott EM, O’Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013;35(11):965–73. doi:10.1002/bies.201300084. Epub 2013 Sep 20. PMID: 24115022.
  • Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115(23):4742–9. doi: 10.1182/blood-2009-10-249540. Epub 2010 Mar 29. PMID: 20351312; PMCID: PMC2890190.
  • Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–42. Epub 2013 Mar 24. PMID: 23535595; PMCID: PMC4031686. doi:10.1038/nature11986.
  • Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85. doi:10.1016/j.ccr.2004.11.022. PMID: 15652751.
  • Nishi K, Oda T, Takabuchi S, Oda S, Fukuda K, Adachi T, Semenza GL, Shingu K, Hirota K. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal. 2008;10(5):983–95. doi:10.1089/ars.2007.1825. PMID: 18199003.
  • Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–70.e13. doi:10.1016/j.cell.2016.08.064. Epub 2016 Sep 22. PMID: 27667687; PMCID: PMC5863951.
  • Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, Prodonoff JS, Carregari VC, de Biagi Junior CAO, Crunfli F, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020;32(3):437–46.e5. doi:10.1016/j.cmet.2020.07.007. Epub 2020 Jul 17. Erratum in: Cell Metab. 2020 Sep 1;32(3):498–499. PMID: 32697943; PMCID: PMC7367032.
  • Peng T, Du SY, Son M, Diamond B. HIF-1α is a negative regulator of interferon regulatory factors: Implications for interferon production by hypoxic monocytes. Proc Natl Acad Sci U S A. 2021;118(26):e2106017118. doi:10.1073/pnas.2106017118.PMID: 34108245; PMCID: PMC8256008.
  • Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74. doi:10.1038/s41577-020-0311-8. Epub 2020 Apr 28. PMID: 32346093; PMCID: PMC7187672.
  • Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533–5. doi:10.1038/s41423-020-0402-2. Epub 2020 Mar 19. PMID: 32203188; PMCID: PMC7091858.
  • Williams NC, O’Neill LAJ. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front Immunol. 2018;9:141. doi:10.3389/fimmu.2018.00141. PMID: 29459863; PMCID: PMC5807345.
  • Le Lan C, Loréal O, Cohen T, Ropert M, Glickstein H, Lainé F, Pouchard M, Deugnier Y, Le Treut A, Breuer W, et al. P. Redox active plasma iron in C282Y/C282Y hemochromatosis. Blood. 2005;105(11):4527–31. Epub 2005 Jan 25. PMID: 15671444. doi:10.1182/blood-2004-09-3468.
  • Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, Fritsche G, Wöll E, Weiss G. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. JCM. 2020;9(8):2429. PMID: 32751400; PMCID: PMC7464087. doi:10.3390/jcm9082429.
  • Singh Y, Gupta G, Kazmi I, Al-Abbasi FA, Negi P, Chellappan DK, Dua K. SARS CoV-2 aggravates cellular metabolism mediated complications in COVID-19 infection. Dermatol Ther. 2020;33(6):e13871. doi:10.1111/dth.13871. Epub 2020 Jul 7. PMID: 32558055; PMCID: PMC7323108.
  • Muhoberac BB. What can cellular redox, iron, and reactive oxygen species suggest about the mechanisms and potential therapy of COVID-19? Front Cell Infect Microbiol. 2020;10:569709. doi:10.3389/fcimb.2020.569709. PMID: 33381464; PMCID: PMC7767833.
  • Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. Epub 2020 Mar 11. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. PMID: 32171076; PMCID: PMC7270627. doi:10.1016/S0140-6736(20)30566-3.
  • Cheng L, Li H, Li L, Liu C, Yan S, Chen H, Li Y. Ferritin in the coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Clin Lab Anal. 2020;34(10):e23618. Epub 2020 Oct 19. PMID: 33078400; PMCID: PMC7595919. doi:10.1002/jcla.23618.
  • Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life. 2017;69(6):414–22. doi:10.1002/iub.1621. Epub 2017 Mar 27. PMID: 28349628.
  • Koorts AM, Viljoen M. Ferritin and ferritin isoforms II: protection against uncontrolled cellular proliferation, oxidative damage and inflammatory processes. Arch Physiol Biochem. 2007;113(2):55–64. doi: 10.1080/13813450701422575. PMID: 17558604.
  • Ji D, Zhang D, Chen Z, Xu Z, Zhao P, Zhang M, Zhang L, Cheng G, Wang Y, Yang G, et al. E. Clinical characteristics predicting progression of COVID-19. Lancet. 2020; doi:10.2139/ssrn.3539674.
  • Dahan S, Segal G, Katz I, Hellou T, Tietel M, Bryk G, Amital H, Shoenfeld Y, Dagan A. Ferritin as a marker of severity in COVID-19 patients: a fatal correlation. Isr Med Assoc J. 2020;22(8):494–500. PMID: 33236582.
  • Sabaka P, Koščálová A, Straka I, Hodosy J, Lipták R, Kmotorková B, Kachlíková M, Kušnírová A. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis. 2021;21(1):308. doi:10.1186/s12879-021-05945-8. PMID: 33781216; PMCID: PMC8006112.
  • Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, Gao G. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020;95:332–9. doi:10.1016/j.ijid.2020.04.041. Epub 2020 Apr 22. PMID: 32334118; PMCID: PMC7195003.
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–13. doi:10.1016/j.jinf.2020.03.037. Epub 2020 Apr 10. PMID: 32283152; PMCID: PMC7194613.
  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, HLH Across Speciality Collaboration, UK HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. Epub 2020 Mar 16. PMID: 32192578; PMCID: PMC7270045. doi:10.1016/S0140-6736(20)30628-0.
  • Schulman S, Hu Y, Konstantinides S. Venous thromboembolism in COVID-19. Thromb Haemost. 2020;120(12):1642–53. doi:10.1055/s-0040-1718532. Epub 2020 Oct 24. PMID: 33099284; PMCID: PMC7869046.
  • Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99(10):3505–16. doi:10.1182/blood.v99.10.3505. PMID: 11986201.
  • Ruan Q, Yang K, Wang W, Jiang L, Song J. Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(6):1294–7. doi:10.1007/s00134-020-06028-z. Erratum for: Intensive Care Med. 2020 May;46(5):846-848. PMID: 32253449; PMCID: PMC7131986.
  • Ehsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biol Direct. 2020;15(1):19. doi:10.1186/s13062-020-00275-2. PMID: 33066821; PMCID: PMC7563913.
  • Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43. doi: 10.1016/j.freeradbiomed.2018.09.043. Epub 2018 Sep 28. PMID: 30268886; PMCID: PMC6368883.
  • Li JY, Yao YM, Tian YP. Ferroptosis: a trigger of proinflammatory state progression to immunogenicity in necroinflammatory disease. Front Immunol. 2021;12:701163. doi:10.3389/fimmu.2021.701163. PMID: 34489948; PMCID: PMC8418153.
  • Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52. doi:10.1016/j.freeradbiomed.2018.09.014. Epub 2018 Sep 13. PMID: 30219704.
  • Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med. 2015;212(4):555–68. doi:10.1084/jem.20140857. Epub 2015 Mar 30. PMID: 25824823; PMCID: PMC4387287.
  • Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 2015;6(27):24393–403. doi: 10.18632/oncotarget.5162. PMID: 26405158; PMCID: PMC4695193.
  • Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–7. Epub 2020 Mar 13. PMID: 32073213; PMCID: PMC7166509. doi:10.1111/jth.14768.
  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59(2):298–308. doi: 10.1016/j.molcel.2015.06.011. Epub 2015 Jul 9. PMID: 26166707; PMCID: PMC4506736.
  • Wang Y, Liu Y, Liu J, Kang R, Tang D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem Biophys Res Commun. 2020;531(4):581–7. doi:10.1016/j.bbrc.2020.07.032. Epub 2020 Aug 16. PMID: 32811647.
  • Jacobs W, Lammens M, Kerckhofs A, Voets E, Van San E, Van Coillie S, Peleman C, Mergeay M, Sirimsi S, Matheeussen V, et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. ESC Heart Fail. 2020;7(6):3772–81. Epub ahead of print. PMID: 32959998; PMCID: PMC7607145. doi:10.1002/ehf2.12958.
  • Yang M, Lai CL. SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement? Cell Death Discov. 2020;6:130. doi:10.1038/s41420-020-00369-w. PMID: 33251029; PMCID: PMC7687212.
  • Chen Z, Jiang J, Fu N, Chen L. Targetting ferroptosis for blood cell-related diseases. J Drug Target. 2021; Aug 31::1–15. doi:10.1080/1061186X.2021.1971237.Epub ahead of print. PMID: 34415804.
  • Melo AKG, Milby KM, Caparroz ALMA, Pinto ACPN, Santos RRP, Rocha AP, Ferreira GA, Souza VA, Valadares LDA, Vieira RMRA, et al. Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: A living systematic review and meta-analysis. PLoS One. 2021;16(6):e0253894. doi:10.1371/journal.pone.0253894. PMID: 34185801; PMCID: PMC8241122.
  • Deng F, Zhang L, Lyu L, Lu Z, Gao D, Ma X, Guo Y, Wang R, Gong S, Jiang W. Increased levels of ferritin on admission predicts intensive care unit mortality in patients with COVID-19. Med Clin (Engl Ed). 2021;156(7):324–31. Epub 2021 Apr 1. PMID: 33824908; PMCID: PMC8016043. doi:10.1016/j.medcle.2020.11.015.
  • Bergamaschi G, Borrelli de Andreis F, Aronico N, Lenti MV, Barteselli C, Merli S, Pellegrino I, Coppola L, Cremonte EM, Croce G, Internal Medicine Covid-19 Collaborators, et al. Internal medicine Covid-19 collaborators. Anemia in patients with Covid-19: pathogenesis and clinical significance. Clin Exp Med. 2021;21(2):239–46. doi:10.1007/s10238-020-00679-4. Epub 2021 Jan 8. Erratum in: Clin Exp Med. 2021 Mar 17;: PMID: 33417082; PMCID: PMC7790728.
  • Sun DW, Zhang D, Tian RH, Li Y, Wang YS, Cao J, Tang Y, Zhang N, Zan T, Gao L, et al. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: A sentinel? Clin Chim Acta. 2020;508:122–9. doi:10.1016/j.cca.2020.05.027. Epub 2020 May 14. PMID: 32417210; PMCID: PMC7224669.
  • Wessling-Resnick M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu Rev Nutr. 2018;38:431–58. doi:10.1146/annurev-nutr-082117-051749. Epub 2018 May 31. PMID: 29852086; PMCID: PMC6743070.
  • Weiss RJ, Esko JD, Tor Y. Targeting heparin and heparan sulfate protein interactions. Org Biomol Chem. 2017;15(27):5656–68. doi:10.1039/c7ob01058c. Epub 2017 Jun 27. PMID: 28653068; PMCID: PMC5567684.
  • Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, Mucheli SS, Kuperan P, Ong KH. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020;95(6):E131–E134. doi:10.1002/ajh.25774. Epub 2020 Mar 19. Erratum in: Am J Hematol. 2020 Nov;95(11):1442. PMID: 32129508.
  • Su WL, Lin CP, Hang HC, Wu PS, Cheng CF, Chao YC. Desaturation and heme elevation during COVID-19 infection: a potential prognostic factor of heme oxygenase-1. J Microbiol Immunol Infect. 2021;54(1):113–6. doi:10.1016/j.jmii.2020.10.001. Epub 2020 Oct 16. PMID: 33176981; PMCID: PMC7566820.
  • Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, Salvador D, Jr, Groothof D, Minder B, Kopp-Heim D, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35(8):763–73. doi:10.1007/s10654-020-00678-5. Epub 2020 Aug 20. PMID: 32816244; PMCID: PMC7438401.
  • Wagener F, Pickkers P, Peterson SJ, Immenschuh S, Abraham NG. Targeting the heme-heme oxygenase system to prevent severe complications following COVID-19 infections. 19. Antioxidants (Basel). 2020;9(6):540. PMID: 32575554; PMCID: PMC7346191. doi:10.3390/antiox9060540.
  • Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8. Epub 2020 Apr 21. PMID: 32325026; PMCID: PMC7172722. doi:10.1016/S0140-6736(20)30937-5.
  • Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9. doi:10.1111/jth.14817. Epub 2020 Apr 27. PMID: 32220112.
  • Jankun J, Landeta P, Pretorius E, Skrzypczak-Jankun E, Lipinski B. Unusual clotting dynamics of plasma supplemented with iron(III). Int J Mol Med. 2014 Feb;33(2):367–72. doi:10.3892/ijmm.2013.1585. Epub 2013 Dec 11. PMID: 24337469.
  • Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020 May 2;395(10234):1417–1418. doi:10.1016/S0140-6736(20)30937-5. Epub 2020 Apr 21. PMID: 32325026; PMCID: PMC7172722.
  • Shahbaz S, Xu L, Osman M, Sligl W, Shields J, Joyce M, Tyrrell DL, Oyegbami O, Elahi S. Erythroid precursors and progenitors suppress adaptive immunity and get invaded by SARS-CoV-2. Stem Cell Reports. 2021;16(5):1165–81. doi:10.1016/j.stemcr.2021.04.001. PMID: 33979601; PMCID: PMC8111797.
  • Kronstein-Wiedemann R, Stadtmüller M, Traikov S, Georgi M, Teichert M, Yosef H, Wallenborn J, Karl A, Schütze K, Wagner M, et al. SARS-CoV-2 infects red blood cell progenitors and dysregulates hemoglobin and iron metabolism. Stem Cell Rev Rep. 2022;18:1–13. doi:10.1007/s12015-021-10322-8.Epub ahead of print. PMID: 35181867; PMCID: PMC8856880.
  • Huerga Encabo H, Grey W, Garcia-Albornoz M, Wood H, Ulferts R, Aramburu IV, Kulasekararaj AG, Mufti G, Papayannopoulos V, Beale R, et al. Human erythroid progenitors are directly infected by SARS-CoV-2: Implications for emerging erythropoiesis in severe COVID-19 patients. Stem Cell Reports. 2021;16(3):428–36. doi: 10.1016/j.stemcr.2021.02.001. Epub 2021 Feb 5. PMID: 33581053; PMCID: PMC7862909.
  • Balzanelli MG, Distratis P, Dipalma G, Vimercati L, Inchingolo AD, Lazzaro R, Aityan SK, Maggiore ME, Mancini A, Laforgia R, et al. Sars-CoV-2 Virus Infection May Interfere CD34+ Hematopoietic Stem Cells and Megakaryocyte-Erythroid Progenitors Differentiation Contributing to Platelet Defection towards Insurgence of Thrombocytopenia and Thrombophilia. Microorganisms. 2021;9(8):1632. PMID: 34442710; PMCID: PMC8400074. doi:10.3390/microorganisms9081632.
  • Rapozzi V, Juarranz A, Habib A, Ihan A, Strgar R. Is HAEM the real target of COVID-19? Photodiagnosis Photodyn Ther. 2021;35:102381. doi:10.1016/j.pdpdt.2021.102381. Epub 2021 Jun 11. PMID: 34119708; PMCID: PMC8192263.
  • Conti P, Younes A. Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents. 2020;34(2):339–43. doi:10.23812/Editorial-Conti-3. PMID: 32253888.
  • Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, Liu S, Yang JK. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020;8:152. doi:10.3389/fpubh.2020.00152. PMID: 32411652; PMCID: PMC7201103.
  • Naidu SAG, Clemens RA, Pressman P, Zaigham M, Kadkhoda K, Davies KJA, Naidu AS. COVID-19 during pregnancy and postpartum. I) Pathobiology of severe acute respiratory syndrome coronavirus-2 (SARSCoV-2) at maternal-fetal interface. J Diet Suppl. 2022;19(1):115–42. doi:10.1080/19390211.2020.1834049. Epub 2020 Nov 8. PMID: 33164601.
  • Sankaran VG, Orkin SH. The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med. 2013;3(1):a011643. doi:10.1101/cshperspect.a011643. PMID: 23209159; PMCID: PMC3530042.
  • Drouin E. Beta-thalassemia may protect against COVID 19. Med Hypotheses. 2020;143:110014. doi:10.1016/j.mehy.2020.110014. Epub 2020 Jun 28. PMID: 32615501; PMCID: PMC7321655.
  • Motta I, Migone De Amicis M, Pinto VM, Balocco M, Longo F, Bonetti F, Gianesin B, Graziadei G, Cappellini MD, De Franceschi L, et al. SARS-CoV-2 infection in beta thalassemia: preliminary data from the Italian experience. Am J Hematol. 2020;95(8):E198–E199. doi:10.1002/ajh.25840. Epub 2020 May 6. PMID: 32311145; PMCID: PMC7264660.
  • Wenzhong L, Hualan L. COVID-19: captures iron and generates reactive oxygen species to damage the human immune system. Autoimmunity. 2021;54(4):213–2. Epub ahead of print. PMID: 33899609; PMCID: PMC8074649. doi:10.1080/08916934.2021.1913581.
  • Lechuga GC, Souza-Silva F, Sacramento CQ, Trugilho MRO, Valente RH, Napoleão-Pêgo P, Dias SSG, Fintelman-Rodrigues N, Temerozo JR, Carels N, et al. SARS-CoV-2 proteins bind to hemoglobin and its metabolites. IJMS. 2021;22(16):9035. PMID: 34445741; PMCID: PMC8396565. doi:10.3390/ijms22169035.
  • Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020;16(3):434–40. doi:10.1007/s12015-020-09976-7. PMID: 32307653; PMCID: PMC7167302.
  • Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020;75(11):2829–45. doi:10.1111/all.14429. Epub 2020 Aug 24. PMID: 32496587; PMCID: PMC7300910.
  • Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–7. doi:10.1016/j.thromres.2020.04.013. Epub 2020 Apr 10. PMID: 32291094; PMCID: PMC7146714.
  • Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, Petrey AC, Tolley ND, Guo L, Cody M, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–29. doi:10.1182/blood.2020007214. PMID: 32573711; PMCID: PMC7483430.
  • Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Daßler-Plenker J, Guerci P, Huynh C, Knight JS, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi:10.1084/jem.20200652.PMID: 32302401; PMCID: PMC7161085.
  • Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, Mostyka M, Baxter-Stoltzfus A, Borczuk AC, Loda M, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79. PMID: 32597954; PMCID: PMC7472714. doi:10.1182/blood.2020007008.
  • Twaddell SH, Baines KJ, Grainge C, Gibson PG. The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest. 2019;156(4):774–82. doi:10.1016/j.chest.2019.06.012. Epub 2019 Jun 29. PMID: 31265835.
  • Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. PMID: 32329756; PMCID: PMC7308057. doi:10.1172/jci.insight.138999.
  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41. doi: 10.1083/jcb.200606027. Epub 2007 Jan 8. PMID: 17210947; PMCID: PMC2063942.
  • Muraro SP, De Souza GF, Gallo SW, Da Silva BK, De Oliveira SD, Vinolo MAR, Saraiva EM, Porto BN. Respiratory syncytial virus induces the classical ROS-dependent netosis through pad-4 and necroptosis pathways activation. Sci Rep. 2018;8(1):14166. doi:10.1038/s41598-018-32576-y. PMID: 30242250; PMCID: PMC6154957.
  • Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc). 2020;85(10):1178–90. doi:10.1134/S0006297920100065. PMID: 33202203; PMCID: PMC7590568.
  • Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Zhong NS, et al. China medical treatment expert Group for Covid-19. clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. Epub 2020 Feb 28. PMID: 32109013; PMCID: PMC7092819. doi:10.1056/NEJMoa2002032.
  • Arcanjo A, Logullo J, Menezes CCB, de Souza Carvalho Giangiarulo TC, Dos Reis MC, de Castro GMM, da Silva Fontes Y, Todeschini AR, Freire-de-Lima L, Decoté-Ricardo D, et al. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci Rep. 2020;10(1):19630. doi:10.1038/s41598-020-76781-0. PMID: 33184506; PMCID: PMC7665044.
  • Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–40. doi:10.1182/blood.2020006000. PMID: 32339221; PMCID: PMC7273827.
  • Zuo Y, Zuo M, Yalavarthi S, Gockman K, Madison JA, Shi H, Woodard W, Lezak SP, Lugogo NL, Knight JS, et al. Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv [Preprint]. 2020; May 5:2020.04.30.20086736. doi:10.1101/2020.04.30.20086736.Update in: JCI Insight. 2020 Jun 4;5(11): PMID: 32511553; PMCID: PMC7274234.
  • World Health Organization. WHO director-general’s opening remarks at the media briefing on COVID-19. 2020. March 11. World Health Organization. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-atthe-media-briefing-on-Covid-19–-11-march-2020. 2020.
  • Yağcı S, Serin E, Acicbe Ö, Zeren Mİ, Odabaşı MS. The relationship between serum erythropoietin, hepcidin, and haptoglobin levels with disease severity and other biochemical values in patients with COVID-19. Int J Lab Hematol. 2021;43(S1):142–51. Epub 2021 Feb 7. PMID: 33554466; PMCID: PMC8014125. doi:10.1111/ijlh.13479.
  • Lanser L, Burkert FR, Bellmann-Weiler R, Schroll A, Wildner S, Fritsche G, Weiss G. Dynamics in anemia development and dysregulation of iron homeostasis in hospitalized patients with COVID-19. Metabolites. 2021;11(10):653. PMID: 34677368; PMCID: PMC8540370. doi:10.3390/metabo11100653.
  • Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV. WHO clinical case definition working group on post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2021;Dec(21) S1473-3099(21)007039. doi:10.1016/S1473-3099(21)00703-9.Epub ahead of print. PMID: 34951953; PMCID: PMC8691845.
  • Campione E, Cosio T, Rosa L, Lanna C, Di Girolamo S, Gaziano R, Valenti P, Bianchi L. Lactoferrin as protective natural barrier of respiratory and intestinal mucosa against coronavirus infection and inflammation. Int. IJMS. 2020;21(14):4903. PMID: 32664543; PMCID: PMC7402319. doi:10.3390/ijms21144903.
  • Chang R, Ng TB, Sun WZ. Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int J Antimicrob Agents. 2020;56(3):106118. doi:10.1016/j.ijantimicag.2020.106118. Epub 2020 Jul 30. PMID: 32738305; PMCID: PMC7390755.
  • Naidu SAG, Clemens RA, Pressman P, Zaigham M, Davies KJA, Naidu AS. COVID-19 during pregnancy and postpartum. II) Antiviral spectrum of maternal lactoferrin in fetal and neonatal defense. J Diet Suppl. 2022;19(1):78–114. doi:10.1080/19390211.2020.1834047. Epub 2020 Nov 8. PMID: 33164606.
  • Casey K, Iteen A, Nicolini R, Auten J. COVID-19 pneumonia with hemoptysis: acute segmental pulmonary emboli associated with novel coronavirus infection. Am J Emerg Med. 2020;38(7):1544.e1–e3. doi:10.1016/j.ajem.2020.04.011. Epub 2020 Apr 8. PMID: 32312574; PMCID: PMC7141630.
  • Higdon AN, Benavides GA, Chacko BK, Ouyang X, Johnson MS, Landar A, Zhang J, Darley-Usmar VM. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy. Am J Physiol Heart Circ Physiol. 2012;302(7):H1394–409. doi: 10.1152/ajpheart.00584.2011. Epub 2012 Jan 13. PMID: 22245770; PMCID: PMC3330785.
  • Wegiel B, Hauser CJ, Otterbein LE. Heme as a danger molecule in pathogen recognition. Free Radic Biol Med. 2015;89:651–61. doi:10.1016/j.freeradbiomed.2015.08.020. Epub 2015 Oct 9. PMID: 26456060.
  • Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a target for therapeutic interventions. Front Pharmacol. 2017;8:146. doi: 10.3389/fphar.2017.00146. PMID: 28420988; PMCID: PMC5378770.
  • Espinoza JA, González PA, Kalergis AM. Modulation of antiviral immunity by heme oxygenase-1. Am J Pathol. 2017;187(3):487–93. doi:10.1016/j.ajpath.2016.11.011. Epub 2017 Jan 9. PMID: 28082120.
  • Hooper PL. COVID-19 and heme oxygenase: novel insight into the disease and potential therapies. Cell Stress Chaperones. 2020;25(5):707–10. doi:10.1007/s12192-020-01126-9. Epub 2020 Jun 4. Erratum in: Cell Stress Chaperones. 2020 Jun 29;: PMID: 32500379; PMCID: PMC7271958.
  • Wang Y, Wang P, Wang H, Luo Y, Wan L, Jiang M, Chu Y. Lactoferrin for the treatment of COVID-19 (Review). Exp Ther Med. 2020;20(6):272. doi:10.3892/etm.2020.9402. Epub 2020 Oct 27. PMID: 33199997; PMCID: PMC7664603.
  • Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. IJMS. 2017;18(9):1985. PMID: 28914813; PMCID: PMC5618634. doi:10.3390/ijms18091985.
  • Klebanoff SJ, Waltersdorph AM. Prooxidant activity of transferrin and lactoferrin. J Exp Med. 1990;172(5):1293–303. doi: 10.1084/jem.172.5.1293. PMID: 2230644; PMCID: PMC2188654.
  • Roos G, Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med. 2011;51(2):314–26. doi:10.1016/j.freeradbiomed.2011.04.031. Epub 2011 Apr 23. PMID: 21605662.
  • Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613–9. doi:10.1016/j.redox.2016.12.035. Epub 2017 Jan 5. PMID: 28110218; PMCID: PMC5256672.
  • Jegasothy H, Weerakkody R, Selby-Pham S, Bennett LE. In vitro heme and non-heme iron capture from hemoglobin, myoglobin and ferritin by bovine lactoferrin and implications for suppression of reactive oxygen species in vivo. Biometals. 2014;27(6):1371–82. doi: 10.1007/s10534-014-9798-4. Epub 2014 Oct 4. PMID: 25280951.
  • Maneva A, Taleva B, Maneva L. Lactoferrin-protector against oxidative stress and regulator of glycolysis in human erythrocytes. Z Naturforsch C J Biosci. 2003;58(3-4):256–62. doi:10.1515/znc-2003-3-420. PMID: 12710738.
  • Guillén C, McInnes IB, Kruger H, Brock JH. Iron, lactoferrin and iron regulatory protein activity in the synovium; relative importance of iron loading and the inflammatory response. Ann Rheum Dis. 1998;57(5):309–14. PMID: 9741316; PMCID: PMC1752600. doi:10.1136/ard.57.5.309.
  • Volden J, Jørgensen CE, Rukke EO, Egelandsdal B. Oxidative properties of lactoferrins of different iron-saturation in an emulsion consisting of metmyoglobin and cod liver oil. Food Chem. 2012;132(3):1236–43. Epub 2011 Nov 25. PMID: 29243606. doi:10.1016/j.foodchem.2011.11.092.
  • Bharadwaj S, Naidu TA, Betageri GV, Prasadarao NV, Naidu AS. Inflammatory responses improve with milk ribonuclease-enriched lactoferrin supplementation in postmenopausal women. Inflamm Res. 2010;59(11):971–8. doi:10.1007/s00011-010-0211-7. Epub 2010 May 15. PMID: 20473630.
  • Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, et al. Lactoferrin against SARS-CoV-2: In vitro and in silico evidences. Front Pharmacol. 2021;12:666600. doi:10.3389/fphar.2021.666600. PMID: 34220505; PMCID: PMC8242182.
  • Hu Y, Meng X, Zhang F, Xiang Y, Wang J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg Microbes Infect. 2021;10(1):317–30. doi: 10.1080/22221751.2021.1888660. PMID: 33560940; PMCID: PMC7919907.
  • Serrano G, Kochergina I, Albors A, Diaz E, Oroval M, Hueso G. Liposomal lactoferrin as potential prevention and cure for COVID-19. Int J Res Health Sci. 2020;8:8–15. doi:10.5530/ijrhs.8.1.3.
  • Lang GJ, Zhao H. Can SARS-CoV-2-infected women breastfeed after viral clearance? J Zhejiang Univ Sci B. 2020;21(5):405–7. doi: 10.1631/jzus.B2000095. Epub 2020 May 8. PMID: 32425007; PMCID: PMC7205600.
  • Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, Jiang C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One. 2011;6(8):e23710. doi: 10.1371/journal.pone.0023710. Epub 2011 Aug 22. PMID: 21887302; PMCID: PMC3161750.
  • Pietrantoni A, Di Biase AM, Tinari A, Marchetti M, Valenti P, Seganti L, Superti F. Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob Agents Chemother. 2003;47(8):2688–91. doi:10.1128/AAC.47.8.2688-2691.2003. PMID: 12878543; PMCID: PMC166106.
  • Marr AK, Jenssen H, Moniri MR, Hancock RE, Panté N. Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1. Biochimie. 2009;91(1):160–4. doi:10.1016/j.biochi.2008.05.016. Epub 2008 Jun 5. PMID: 18573311.
  • Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–‐2. doi:10.1038/s41591-020-0820-9. PMID: 32284615.
  • Nao N, Yamagishi J, Miyamoto H, Igarashi M, Manzoor R, Ohnuma A, Tsuda Y, Furuyama W, Shigeno A, Kajihara M, et al. Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin. mBio. 2017;8(1):e02298–16. Published 2017 Feb 14. PMID: 28196963. doi:10.1128/mBio.02298-16.
  • van Berkel PH, Geerts ME, van Veen HA, Mericskay M, de Boer HA, Nuijens JH. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem J. 1997;328(1):145–‐51. PMID: 9359845 doi:10.1042/bj3280145.
  • Kawasaki Y, Sato K, Shinmoto H, Dosako S. Role of basic residues of human lactoferrin in the interaction with B lymphocytes. Biosci Biotechnol Biochem. 2000;64(2):314–‐8. doi: 10.1271/bbb.64.314 PMID: 10737187.
  • Legrand D. Overview of lactoferrin as a natural immune Modulator. J Pediatr. 2016;173 Suppl(Suppl):S10–S5. doi:10.1016/j.jpeds.2016.02.071. PMID: 27234406.
  • van der Does AM, Hensbergen PJ, Bogaards SJ, Cansoy M, Deelder AM, van Leeuwen HC, Drijfhout JW, van Dissel JT, Nibbering PH. The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol. 2012;188(10):5012–‐9. doi:10.4049/jimmunol.1102777. PMID: 22523385
  • Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol. 2003;47(3):607–‐17. doi: 10.1046/j.1365-2958.2003.03327.x PMID: 12535064.
  • Zimecki M, Actor JK, Kruzel ML. The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol. 2021;95:107571. doi:10.1016/j.intimp.2021.107571. Epub 2021 Mar 12. PMID: 33765614; PMCID: PMC7953442.
  • Paesano R, Pietropaoli M, Gessani S, Valenti P. The influence of lactoferrin, orally administered, on systemic iron homeostasis in pregnant women suffering of iron deficiency and iron deficiency anaemia. Biochimie. 2009;91(1):44–51. doi:10.1016/j.biochi.2008.06.004. Epub 2008 Jun 14. PMID: 18601971.
  • Cutone A, Rosa L, Lepanto MS, Scotti MJ, Berlutti F, Bonaccorsi di Patti MC, Musci G, Valenti P. Lactoferrin efficiently counteracts the inflammation-induced changes of the iron homeostasis system in macrophages. Front Immunol. 2017;8:705. doi:10.3389/fimmu.2017.00705. PMID: 28663751; PMCID: PMC5471297.
  • Zwirzitz A, Reiter M, Skrabana R, Ohradanova-Repic A, Majdic O, Gutekova M, Cehlar O, Petrovčíková E, Kutejova E, Stanek G, et al. Lactoferrin is a natural inhibitor of plasminogen activation. J Biol Chem. 2018;293(22):8600–13. doi:10.1074/jbc.RA118.003145. Epub 2018 Apr 18. PMID: 29669808; PMCID: PMC5986228.
  • Marietta M, Coluccio V, Luppi M. COVID-19, coagulopathy and venous thromboembolism: more questions than answers. Intern Emerg Med. 2020;15(8):1375–87. doi:10.1007/s11739-020-02432-x. Epub 2020 Jul 11. PMID: 32653981; PMCID: PMC7352087.
  • Frioni A, Conte MP, Cutone A, Longhi C, Musci G, di Patti MC, Natalizi T, Marazzato M, Lepanto MS, Puddu P, et al. Lactoferrin differently modulates the inflammatory response in epithelial models mimicking human inflammatory and infectious diseases. Biometals. 2014;27(5):843–56. doi: 10.1007/s10534-014-9740-9. Epub 2014 Apr 26. PMID: 24770943.
  • Padhan K, Minakshi R, Towheed MAB, Jameel S. Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. J Gen Virol. 2008;89(Pt 8):1960–9. doi:10.1099/vir.0.83665-0. PMID: 18632968.
  • Bonaccorsi di Patti MC, Cutone A, Polticelli F, Rosa L, Lepanto MS, Valenti P, Musci G. The ferroportin-ceruloplasmin system and the mammalian iron homeostasis machine: regulatory pathways and the role of lactoferrin. Biometals. 2018;31(3):399–414. doi:10.1007/s10534-018-0087-5. Epub 2018 Feb 16. PMID: 29453656.
  • Lepanto MS, Rosa L, Cutone A, Conte MP, Paesano R, Valenti P. Efficacy of lactoferrin oral administration in the treatment of anemia and anemia of inflammation in pregnant and non-pregnant women: an interventional study. Front Immunol. 2018;9:2123. doi:10.3389/fimmu.2018.02123. PMID: 30298070; PMCID: PMC6160582.
  • Zakharova ET, Kostevich VA, Sokolov AV, Vasilyev VB. Human apo-lactoferrin as a physiological mimetic of hypoxia stabilizes hypoxia-inducible factor-1 alpha. Biometals. 2012;25(6):1247–59. doi:10.1007/s10534-012-9586-y. Epub 2012 Sep 22. PMID: 23001680.
  • Zakharova ET, Sokolov AV, Pavlichenko NN, Kostevich VA, Abdurasulova IN, Chechushkov AV, Voynova IV, Elizarova AY, Kolmakov NN, Bass MG, et al. Erythropoietin and Nrf2: key factors in the neuroprotection provided by apo-lactoferrin. Biometals. 2018;31(3):425–43. doi:10.1007/s10534-018-0111-9. Epub 2018 May 10. PMID: 29748743.
  • Ibuki M, Shoda C, Miwa Y, Ishida A, Tsubota K, Kurihara T. Lactoferrin has a therapeutic effect via hif inhibition in a murine model of choroidal neovascularization. Front Pharmacol. 2020;11:174. doi:10.3389/fphar.2020.00174.PMID: 32180725; PMCID: PMC7059857.
  • Lee NY, Cheng JT, Enomoto T, Nakamura I. The antihypertensive activity of angiotensin-converting enzyme inhibitory peptide containing in bovine lactoferrin. Chin J Physiol. 2006; 49(2):67–73. PMID: 16830788.
  • Fernández-Musoles R, Castelló-Ruiz M, Arce C, Manzanares P, Ivorra MD, Salom JB. Antihypertensive mechanism of lactoferrin-derived peptides: angiotensin receptor blocking effect. J Agric Food Chem. 2014;62(1):173–81. Epub 2013 Dec 26. PMID: 24354413. doi:10.1021/jf404616f.
  • Berlutti F, Pantanella F, Natalizi T, Frioni A, Paesano R, Polimeni A, Valenti P . Antiviral properties of lactoferrin-a natural immunity molecule. Molecules. 2011;16(8):6992–7018. doi:10.3390/molecules16086992. PMID: 21847071; PMCID: PMC6264778.
  • Wakabayashi H, Oda H, Yamauchi K, Abe F. Lactoferrin for prevention of common viral infections. J Infect Chemother. 2014;20(11):666–71. doi:10.1016/j.jiac.2014.08.003. Epub 2014 Aug 30. PMID: 25182867.
  • Ryter SW, Choi AM. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res. 2016;167(1):7–34. doi:10.1016/j.trsl.2015.06.011. Epub 2015 Jun 23. PMID: 26166253; PMCID: PMC4857893.
  • Nitti M, Furfaro AL, Mann GE. Heme oxygenase dependent bilirubin generation in vascular cells: A role in preventing endothelial dysfunction in local tissue microenvironment? Front Physiol. 2020;11:23. doi:10.3389/fphys.2020.00023. PMID: 32082188; PMCID: PMC7000760.
  • Luu Hoang KN, Anstee JE, Arnold JN. The diverse roles of heme oxygenase-1 in tumor progression. Front Immunol. 2021;112:658315. doi:10.3389/fimmu.2021.658315. PMID: 33868304; PMCID: PMC8044534.
  • Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol. 2021;21(7):411–25. doi:10.1038/s41577-020-00491-x. Epub 2021 Jan 29. PMID: 33514947.
  • Vijayan V, Wagener F, Immenschuh S. The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem Pharmacol. 2018;153:159–67. doi:10.1016/j.bcp.2018.02.010. Epub 2018 Feb 13. PMID: 29452096.
  • Shibahara S, Han F, Li B, Takeda K. Hypoxia and heme oxygenases: oxygen sensing and regulation of expression. Antioxid Redox Signal. 2007;9(12):2209–25. doi:10.1089/ars.2007.1784. PMID: 17887916.
  • Ryter SW, Tyrrell RM. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic Biol Med. 2000;28(2):289–309. PMID: 11281297. doi:10.1016/S0891-5849(99)00223-3.
  • Gáll T, Balla G, Balla J. Heme, heme oxygenase, and endoplasmic reticulum stress-A new insight into the pathophysiology of vascular diseases. Int J Mol Sci. 2019;20(15):3675. doi:10.3390/ijms20153675.PMID: 31357546; PMCID: PMC6695876.
  • Consoli V, Sorrenti V, Grosso S, Vanella L. Heme oxygenase-1 signaling and redox homeostasis in physio-pathological conditions. Biomolecules. 2021;11(4):589. PMID: 33923744; PMCID: PMC8072688. doi:10.3390/biom11040589.
  • Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(1):250–6. doi:10.1002/jmv.26232. Epub 2020 Sep 30. PMID: 32592501; PMCID: PMC7361342.
  • Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74(13):1526–39. doi:10.1055/s-0028-1088302. Epub 2008 Oct 20. PMID: 18937164.
  • Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68. doi: 10.1038/s41586-020-2286-9. Epub 2020 Apr 30. PMID: 32353859; PMCID: PMC7431030.
  • Siu KL, Yuen KS, Castaño-Rodriguez C, Ye ZW, Yeung ML, Fung SY, Yuan S, Chan CP, Yuen KY, Enjuanes L, et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. Faseb J. 2019;33(8):8865–77. doi:10.1096/fj.201802418R. Epub 2019 Apr 29. PMID: 31034780; PMCID: PMC6662968.
  • Batra N, De Souza C, Batra J, Raetz AG, Yu AM. The HMOX1 pathway as a promising target for the treatment and prevention of SARS-CoV-2 of 2019 (COVID-19). IJMS. 2020;21(17):6412. PMID: 32899231; PMCID: PMC7503392. doi:10.3390/ijms21176412.
  • Rossi M, Piagnerelli M, Van Meerhaeghe A, Zouaoui Boudjeltia K. Heme oxygenase-1 (HO-1) cytoprotective pathway: a potential treatment strategy against coronavirus disease 2019 (COVID-19)-induced cytokine storm syndrome. Med Hypotheses. 2020;144:110242. doi:10.1016/j.mehy.2020.110242. Epub 2020 Sep 3. PMID: 33254548; PMCID: PMC7467863.
  • Ribes A, Vardon-Bounes F, Mémier V, Poette M, Au-Duong J, Garcia C, Minville V, Sié P, Bura-Rivière A, Voisin S, et al. Thromboembolic events and Covid-19. Adv Biol Regul. 2020;77:100735. doi:10.1016/j.jbior.2020.100735. Epub 2020 Jun 17. PMID: 32773098; PMCID: PMC7833411.
  • Singh D, Wasan H, Reeta KH. Heme oxygenase-1 modulation: a potential therapeutic target for COVID-19 and associated complications. Free Radic Biol Med. 2020;161:263–71. doi:10.1016/j.freeradbiomed.2020.10.016. Epub 2020 Oct 19. PMID: 33091573; PMCID: PMC7571447.
  • Peng L, Mundada L, Stomel JM, Liu JJ, Sun J, Yet SF, Fay WP. Induction of heme oxygenase-1 expression inhibits platelet-dependent thrombosis. Antioxid Redox Signal. 2004;6(4):729–35. doi:10.1089/1523086041361677. PMID: 15242554.
  • Lindenblatt N, Bordel R, Schareck W, Menger MD, Vollmar B. Vascular heme oxygenase-1 induction suppresses microvascular thrombus formation in vivo. Arterioscler Thromb Vasc Biol. 2004;24(3):601–6. doi:10.1161/01.ATV.0000118279.74056.8a. Epub 2004 Jan 22. PMID: 14739126.
  • True AL, Olive M, Boehm M, San H, Westrick RJ, Raghavachari N, Xu X, Lynn EG, Sack MN, Munson PJ, et al. Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ Res. 2007;101(9):893–901. doi:10.1161/CIRCRESAHA.107.158998. Epub 2007 Sep 20. PMID: 17885218.
  • Mahapatra S, Young CY, Kohli M, Karnes RJ, Klee EW, Holmes MW, Tindall DJ, Donkena KV. Antiangiogenic effects and therapeutic targets of Azadirachta indica leaf extract in endothelial cells. Evid Based Complement Alternat Med. 2012;2012:303019. doi:10.1155/2012/303019. Epub 2012 Feb 22. PMID: 22461839; PMCID: PMC3296311.
  • Chen CY, Jang JH, Li MH, Surh YJ. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun. 2005;331(4):993–1000. doi:10.1016/j.bbrc.2005.03.237. PMID: 15882976.
  • Jeong S-O, Oh G-S, Ha H-Y, Soon Koo B, Sung Kim H, Kim Y-C, Kim E-C, Lee K-M, Chung H-T, Pae H-O. Dimethoxycurcumin, a synthetic curcumin analogue, induces heme oxygenase-1 expression through Nrf2 activation in RAW264.7 macrophages. J Clin Biochem Nutr. 2009;44(1):79–84. doi: 10.3164/jcbn.08-194. Epub 2008 Dec 27. PMID: 19177192; PMCID: PMC2613503.
  • Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, Nussler N. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol. 2007;47(2):253–61. doi:10.1016/j.jhep.2007.02.008. Epub 2007 Mar 7. PMID: 17433488.
  • De Maio A, Hightower LE. COVID-19, acute respiratory distress syndrome (ARDS), and hyperbaric oxygen therapy (HBOT): what is the link? Cell Stress Chaperones. 2020;25(5):717–20. doi:10.1007/s12192-020-01121-0. PMID: 32424591; PMCID: PMC7232923.
  • Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C. Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones. 2010;15(4):431–42. doi: 10.1007/s12192-009-0159-0. Epub 2009 Dec 1. PMID: 19949909; PMCID: PMC3082642.
  • Krantz SB. Erythropoietin. Blood. 1991;77(3):419–34. PMID: 1991159.
  • Bunn HF, Gu J, Huang LE, Park JW, Zhu H. Erythropoietin: a model system for studying oxygen-dependent gene regulation. J Exp Biol. 1998;201(Pt 8):1197–201. PMID: 9510530; PMCID: PMC3044471. doi:10.1242/jeb.201.8.1197.
  • Hildebrandt W, Alexander S, Bärtsch P, Dröge W. Effect of N-acetyl-cysteine on the hypoxic ventilatory response and erythropoietin production: linkage between plasma thiol redox state and O(2) chemosensitivity. Blood. 2002;99(5):1552–5. doi: 10.1182/blood.v99.5.1552. PMID: 11861267.
  • Hadadi A, Mortezazadeh M, Kolahdouzan K, Alavian G. Does recombinant human erythropoietin administration in critically ill COVID-19 patients have miraculous therapeutic effects? J Med Virol. 2020;92(7):915–8. Epub 2020 Apr 19. PMID: 32270515; PMCID: PMC7262240. doi:10.1002/jmv.25839.
  • Bailey DM, Robach P, Thomsen JJ, Lundby C. Erythropoietin depletes iron stores: antioxidant neuroprotection for ischemic stroke? Stroke. 2006;37(10):2453. doi:10.1161/01.STR.0000239787.92203.16. Epub 2006 Aug 17. PMID: 16917084.
  • Schobersberger W, Hoffmann G, Fandrey J. Nitric oxide donors suppress erythropoietin production in vitro. Pflugers Arch. 1996;432(6):980–5. doi:10.1007/s004240050225. PMID: 8781191.
  • Viruez-Soto A, López-Dávalos MM, Rada-Barrera G, Merino-Luna A, Molano-Franco D, Tinoco-Solorozano A, Zubieta-DeUrioste N, Zubieta-Calleja G, Arias-Reyes C, Soliz J. Low serum erythropoietin levels are associated with fatal COVID-19 cases at 4,150 meters above sea level. Respir Physiol Neurobiol. 2021;292:103709. doi:10.1016/j.resp.2021.103709. Epub 2021 Jun 2. PMID: 34087493; PMCID: PMC8169280.
  • Ehrenreich H, Weissenborn K, Begemann M, Busch M, Vieta E, Miskowiak KW. Erythropoietin as candidate for supportive treatment of severe COVID-19. Mol Med. 2020;26(1):58. doi:10.1186/s10020-020-00186-y. PMID: 32546125; PMCID: PMC7297268.
  • Soliz J, Schneider-Gasser EM, Arias-Reyes C, Aliaga-Raduan F, Poma-Machicao L, Zubieta-Calleja G, Furuya WI, Trevizan-Baú P, Dhingra RR, Dutschmann M. Coping with hypoxemia: Could erythropoietin (EPO) be an adjuvant treatment of COVID-19? Respir Physiol Neurobiol. 2020;279:103476. doi:10.1016/j.resp.2020.103476. Epub 2020 Jun 6. PMID: 32522574; PMCID: PMC7275159.
  • Suresh S, Rajvanshi PK, Noguchi CT. The many facets of erythropoietin physiologic and metabolic response. Front Physiol. 2019;10:1534. doi:10.3389/fphys.2019.01534. PMID: 32038269; PMCID: PMC6984352.
  • Peng B, Kong G, Yang C, Ming Y. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis. 2020;11(2):79. doi:10.1038/s41419-020-2276-8. PMID: 32015330; PMCID: PMC6997384.
  • Sahebnasagh A, Mojtahedzadeh M, Najmeddin F, Najafi A, Safdari M, Rezai Ghaleno H, Habtemariam S, Berindan-Neagoe I, Nabavi SM. A perspective on erythropoietin as a potential adjuvant therapy for acute lung injury/acute respiratory distress syndrome in patients with COVID-19. Arch Med Res. 2020;51(7):631–5. doi:10.1016/j.arcmed.2020.08.002. Epub 2020 Aug 11. PMID: 32863034; PMCID: PMC7418647.
  • Cao F, Tian X, Li Z, Lv Y, Han J, Zhuang R, Cheng B, Gong Y, Ying B, Jin S, et al. Suppression of NLRP3 inflammasome by erythropoietin via the EPOR/JAK2/STAT3 pathway contributes to attenuation of acute lung injury in mice. Front Pharmacol. 2020;11:306. doi:10.3389/fphar.2020.00306. PMID: 32265704; PMCID: PMC7096553.
  • Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurfel MM, Evans L, et al. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med. 2020;382(21):2012–22. doi:10.1056/NEJMoa2004500. Epub 2020 Mar 30. PMID: 32227758; PMCID: PMC7143164.
  • Solaimanzadeh I. Acetazolamide, nifedipine and phosphodiesterase inhibitors: rationale for their utilization as adjunctive countermeasures in the treatment of coronavirus disease 2019 (COVID-19). Cureus. 2020;12(3):e7343. doi:10.7759/cureus.7343. PMID: 32226695; PMCID: PMC7096066.
  • Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect. 2012;14(3):238–46. doi:10.1016/j.micinf.2011.10.005. Epub 2011 Nov 4. PMID: 22094132; PMCID: PMC3278592.
  • Collantes MEV, Espiritu AI, Sy MCC, Anlacan VMM, Jamora RDG. Neurological manifestations in COVID-19 infection: a systematic review and meta-analysis. Can J Neurol Sci. 2021;48(1):66–76. doi:10.1017/cjn.2020.146. Epub 2020 Jul 15. PMID: 32665054; PMCID: PMC7492583.
  • Caravagna C, Soliz J. PI3K and MEK1/2 molecular pathways are involved in the erythropoietin-mediated regulation of the central respiratory command. Respir Physiol Neurobiol. 2015;206:36–40. doi:10.1016/j.resp.2014.11.012. Epub 2014 Nov 21. PMID: 25462838.
  • Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A. 2001;98(15):8780–5. doi:10.1073/pnas.151179498. Epub 2001 Jul 10. PMID: 11447267; PMCID: PMC37512.
  • Daher R, Karim Z. Iron metabolism: state of the art. Transfus Clin Biol. 2017;24(3):115–9. doi:10.1016/j.tracli.2017.06.015. Epub 2017 Jul 8. PMID: 28694024.
  • Palaneeswari MS, Ganesh M, Karthikeyan T, Devi AJ, Mythili SV. Hepcidin-minireview. J Clin Diagn Res. 2013;7(8):1767–71. doi:10.7860/JCDR/2013/6420.3273. Epub 2013 Aug 1. PMID: 24086909; PMCID: PMC3782966.
  • Ravasi G, Pelucchi S, Trombini P, Mariani R, Tomosugi N, Modignani GL, Pozzi M, Nemeth E, Ganz T, Hayashi H, et al. Hepcidin expression in iron overload diseases is variably modulated by circulating factors. PLoS One. 2012;7(5):e36425. doi:10.1371/journal.pone.0036425. Epub 2012 May 7. PMID: 22586470; PMCID: PMC3346721.
  • Parrow NL, Fleming RE. Bone morphogenetic proteins as regulators of iron metabolism. Annu Rev Nutr. 2014;34:77–94. doi:10.1146/annurev-nutr-071813-105646. Epub 2014 Jun 6. PMID: 24995692; PMCID: PMC7713507.
  • Chen S, Feng T, Vujić Spasić M, Altamura S, Breitkopf-Heinlein K, Altenöder J, Weiss TS, Dooley S, Muckenthaler MU. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes. J Biol Chem. 2016;291(25):13160–74. doi:10.1074/jbc.M115.691543. Epub 2016 Apr 27. PMID: 27129231; PMCID: PMC4933231.
  • Banchini F, Vallisa D, Maniscalco P, Capelli P. Iron overload and Hepcidin overexpression could play a key role in COVID infection, and may explain vulnerability in elderly, diabetics, and obese patients. Acta Biomed. 2020;91(3):e2020013. doi:10.23750/abm.v91i3.9826. PMID: 32921750; PMCID: PMC7716981.
  • Blanchette NL, Manz DH, Torti FM, Torti SV. Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Rev Hematol. 2016;9(2):169–86. doi:10.1586/17474086.2016.1124757. Epub 2015 Dec 15. PMID: 26669208; PMCID: PMC4849272.
  • Pietrangelo A. Hepcidin in human iron disorders: therapeutic implications. J Hepatol. 2011;54(1):173–81. doi:10.1016/j.jhep.2010.08.004. Epub 2010 Aug 26. PMID: 20932599.
  • Luo X, Luo Z, Zhang Z, Yang H, Lai B, Yao Q, Xiao L, Wang N. Homocysteine upregulates hepcidin expression through BMP6/SMAD signaling pathway in hepatocytes. Biochem Biophys Res Commun. 2016;471(2):303–8. doi:10.1016/j.bbrc.2016.02.001. Epub 2016 Feb 15. PMID: 26855134.
  • Lei Y, Zhao C, Chang H, Zhang D, Li Y, Anderson GJ, Shen Y, Duan X, Chang YZ. Calcitonin increases hepatic hepcidin expression through the BMP6 of kidney in mice. J Trace Elem Med Biol. 2021;68:126796. doi:10.1016/j.jtemb.2021.126796. Epub 2021 Jun 1. PMID: 34098241.
  • Yang L, Wang H, Yang X, Wu Q, An P, Jin X, Liu W, Huang X, Li Y, Yan S, et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther. 2020;5(1):138. doi:10.1038/s41392-020-00253-0. PMID: 32732975; PMCID: PMC7393508.
  • Chung B, Verdier F, Matak P, Deschemin JC, Mayeux P, Vaulont S. Oncostatin M is a potent inducer of hepcidin, the iron regulatory hormone. Faseb J. 2010;24(6):2093–103. doi:10.1096/fj.09-152561. Epub 2010 Feb 2. PMID: 20124431.
  • Zhen AW, Nguyen NH, Gibert Y, Motola S, Buckett P, Wessling-Resnick M, Fraenkel E, Fraenkel PG. The small molecule, genistein, increases hepcidin expression in human hepatocytes. Hepatology. 2013;58(4):1315–25. doi:10.1002/hep.26490. Epub 2013 Aug 19. PMID: 23703590; PMCID: PMC3770762.
  • Bayele HK, Balesaria S, Srai SK. Phytoestrogens modulate hepcidin expression by Nrf2: Implications for dietary control of iron absorption. Free Radic Biol Med. 2015;89:1192–202. doi:10.1016/j.freeradbiomed.2015.11.001. Epub 2015 Nov 10. PMID: 26546695; PMCID: PMC4698393.
  • Kim EY, Ham SK, Shigenaga MK, Han O. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. J Nutr. 2008;138(9):1647–51. PMID: 18716164. doi:10.1093/jn/138.9.1647.
  • Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009;53(2):75–100. doi:10.1007/s12013-009-9043-x. PMID: 19184542.
  • Kaltwasser JP, Werner E, Schalk K, Hansen C, Gottschalk R, Seidl C. Clinical trial on the effect of regular tea drinking on iron accumulation in genetic haemochromatosis. Gut. 1998;43(5):699–704. doi: 10.1136/gut.43.5.699. PMID: 9824354; PMCID: PMC1727318.
  • Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother. 2021;136:111228. doi: 10.1016/j.biopha.2021.111228. Epub 2021 Jan 13. PMID: 33454595; PMCID: PMC7836924.
  • Okada K, Warabi E, Sugimoto H, Horie M, Tokushige K, Ueda T, Harada N, Taguchi K, Hashimoto E, Itoh K, et al. Nrf2 inhibits hepatic iron accumulation and counteracts oxidative stress-induced liver injury in nutritional steatohepatitis. J Gastroenterol. 2012;47(8):924–35. doi:10.1007/s00535-012-0552-9. Epub 2012 Feb 28. PMID: 22367278.
  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. doi:10.1016/j.cell.2012.03.042. PMID: 22632970; PMCID: PMC3367386.
  • Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108. doi:10.1016/j.biopha.2020.110108. Epub 2020 Mar 29. PMID: 32234642.
  • Stockwell BR, Jiang X. The chemistry and biology of ferroptosis. Cell Chem Biol. 2020;27(4):365–75. doi:10.1016/j.chembiol.2020.03.013. PMID: 32294465; PMCID: PMC7204503.
  • Qiu YB, Wan BB, Liu G, Wu YX, Chen D, Lu MD, Chen JL, Yu RQ, Chen DZ, Pang QF. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respir Res. 2020;21(1):232. doi:10.1186/s12931-020-01500-2. PMID: 32907551; PMCID: PMC7488337.
  • Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688–92. doi:10.1038/s41586-019-1705-2. Epub 2019 Oct 21. PMID: 31634900; PMCID: PMC6883167.
  • Fan BY, Pang YL, Li WX, Zhao CX, Zhang Y, Wang X, Ning GZ, Kong XH, Liu C, Yao X, et al. Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res. 2021;16(3):561–6. doi:10.4103/1673-5374.293157. PMID: 32985488; PMCID: PMC7996026.
  • Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, Pratt DA. On the mechanism of cytoprotection by ferrostatin-1 and Liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 2017;3(3):232–43. doi:10.1021/acscentsci.7b00028. Epub 2017 Mar 7. PMID: 28386601; PMCID: PMC5364454.
  • Hu B, Liu Y, Chen X, Zhao J, Han J, Dong H, Zheng Q, Nie G. Ferrostatin-1 protects auditory hair cells from cisplatin-induced ototoxicity in vitro and in vivo. Biochem Biophys Res Commun. 2020;533(4):1442–8. doi: 10.1016/j.bbrc.2020.10.019. Epub 2020 Oct 24. PMID: 33109343.
  • Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin M, Zennaro L, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28:101328. doi:10.1016/j.redox.2019.101328. Epub 2019 Sep 20. PMID: 31574461; PMCID: PMC6812032.
  • Hofmans S, Vanden Berghe T, Devisscher L, Hassannia B, Lyssens S, Joossens J, Van Der Veken P, Vandenabeele P, Augustyns K. Novel ferroptosis inhibitors with improved Potency and ADME properties. J Med Chem. 2016;59(5):2041–53. doi: 10.1021/acs.jmedchem.5b01641. Epub 2016 Feb 8. PMID: 26696014.
  • Chen B, Li X, Ouyang X, Liu J, Liu Y, Chen D. Comparison of ferroptosis-inhibitory mechanisms between ferrostatin-1 and dietary stilbenes (Piceatannol and Astringin). Molecules. 2021;26(4):1092. PMID: 33669598; PMCID: PMC7922211. doi:10.3390/molecules26041092.
  • Cao Y, Li Y, He C, Yan F, Li JR, Xu HZ, Zhuang JF, Zhou H, Peng YC, Fu XJ, et al. Selective ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neurosci Bull. 2021;37(4):535–49. doi:10.1007/s12264-020-00620-5. Epub 2021 Jan 9. PMID: 33421025; PMCID: PMC8055759.
  • Ma H, Wang X, Zhang W, Li H, Zhao W, Sun J, Yang M. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid Med Cell Longev. 2020;2020:9067610. doi:10.1155/2020/9067610. PMID: 33343809; PMCID: PMC7732386.
  • Naveenkumar SK, Hemshekhar M, Kemparaju K, Girish KS. Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: Protection by Melatonin. Biochim Biophys Acta Mol Basis Dis. 2019;1865(9):2303–16. doi:10.1016/j.bbadis.2019.05.009. Epub 2019 May 16. PMID: 31102787.
  • Han F, Li S, Yang Y, Bai Z. Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis. Bioengineered. 2021;12(1):5279–88. doi: 10.1080/21655979.2021.1964158. PMID: 34402724.
  • Shao Y, Saredy J, Xu K, Sun Y, Saaoud F, Drummer C, Lu Y, Luo JJ, Lopez-Pastrana J, Choi ET, et al. Endothelial immunity trained by coronavirus infections, DAMP stimulations and regulated by anti-oxidant NRF2 may contribute to inflammations, myelopoiesis, COVID-19 cytokine storms and thromboembolism. Front Immunol. 2021;12:653110. doi:10.3389/fimmu.2021.653110. PMID: 34248940; PMCID: PMC8269631.
  • Du J, Zhou Y, Li Y, Xia J, Chen Y, Chen S, Wang X, Sun W, Wang T, Ren X, et al. Identification of frataxin as a regulator of ferroptosis. Redox Biol. 2020;32:101483. doi:10.1016/j.redox.2020.101483. Epub 2020 Mar 2. PMID: 32169822; PMCID: PMC7068686.
  • Yang L, Liu Y, Zhang W, Hua Y, Chen B, Wu Q, Chen D, Liu S, Li X. Ferroptosis-Inhibitory Difference between Chebulagic Acid and Chebulinic Acid Indicates Beneficial Role of HHDP. Molecules. 2021;26(14):4300. PMID: 34299576; PMCID: PMC8303713. doi:10.3390/molecules26144300.
  • Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C, Martín-Sanchez D, Farré-Alins V, Egea J, Cannata P, et al. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. Faseb J. 2019;33(8):8961–75. doi: 10.1096/fj.201900077R. Epub 2019 Apr 29. PMID: 31034781.
  • Lin CC, Wang PH. Intravenous glycyrrhizin improved serum transaminases rapidly in a chronic hepatitis B patient with acute exacerbation. J Formos Med Assoc. 2015;114(2):188–9. doi:10.1016/j.jfma.2012.08.012. Epub 2012 Sep 7. PMID: 25678183.
  • Wang Y, Chen Q, Shi C, Jiao F, Gong Z. Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Mol Med Rep. 2019;20(5):4081–90. doi:10.3892/mmr.2019.10660. Epub 2019 Sep 10. PMID: 31545489; PMCID: PMC6797988.
  • Barrett CD, Moore HB, Yaffe MB, Moore EE. ISTH interim guidance on recognition and management of coagulopathy in COVID-19: a comment. J Thromb Haemost. 2020;18(8):2060–3. doi:10.1111/jth.14860. Epub 2020 Jun 14. PMID: 32302462.
  • Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. doi: 10.1016/j.jcv.2020.104362. Epub 2020 Apr 9. PMID: 32305883; PMCID: PMC7195278.
  • Mulloy B. Structure and physicochemical characterisation of heparin. Handb Exp Pharmacol. 2012;(207):77–98. doi:10.1007/978-3-642-23056-1_5.PMID: 22566222.
  • Hippensteel JA, LaRiviere WB, Colbert JF, Langouët-Astrié CJ, Schmidt EP. Heparin as a therapy for COVID-19: current evidence and future possibilities. Am J Physiol Lung Cell Mol Physiol. 2020;319(2):L211–L217. doi: 10.1152/ajplung.00199.2020. Epub 2020 Jun 10. PMID: 32519894; PMCID: PMC7381711.
  • Lindahl U, Li JP. Heparin - An old drug with multiple potential targets in Covid-19 therapy. J Thromb Haemost. 2020;18(9):2422–4. doi:10.1111/jth.14898. Epub 2020 Aug 27. PMID: 32426897; PMCID: PMC7276884.
  • Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008;122(6):743–52. doi:10.1016/j.thromres.2006.10.026. Epub 2007 Aug 28. PMID: 17727922.
  • Hao C, Xu H, Yu L, Zhang L. Heparin: an essential drug for modern medicine. Prog Mol Biol Transl Sci. 2019;163:1–19. doi:10.1016/bs.pmbts.2019.02.002. Epub 2019 Mar 21. PMID: 31030744.
  • Li X, Li L, Shi Y, Yu S, Ma X. Different signaling pathways involved in the anti-inflammatory effects of unfractionated heparin on lipopolysaccharide-stimulated human endothelial cells. J Inflamm (Lond). 2020;17:5. doi:10.1186/s12950-020-0238-7. PMID: 32063752; PMCID: PMC7011532.
  • Shi C, Tingting W, Li JP, Sullivan MA, Wang C, Wang H, Deng B, Zhang Y. Comprehensive landscape of heparin therapy for COVID-19. Carbohydr Polym. 2021;254:117232. doi:10.1016/j.carbpol.2020.117232. Epub 2020 Oct 22. PMID: 33357843; PMCID: PMC7581413.
  • Yan Y, Ji Y, Su N, Mei X, Wang Y, Du S, Zhu W, Zhang C, Lu Y, Xing XH. Non-anticoagulant effects of low molecular weight heparins in inflammatory disorders: A review. Carbohydr Polym. 2017;160:71–81. doi:10.1016/j.carbpol.2016.12.037. Epub 2016 Dec 21. PMID: 28115102.
  • Negri EM, Piloto BM, Morinaga LK, Jardim CVP, Lamy SAE, Ferreira MA, D’Amico EA, Deheinzelin D. Heparin therapy improving hypoxia in COVID-19 patients: a case series. Front Physiol. 2020;11:573044. doi:10.3389/fphys.2020.573044. PMID: 33192569; PMCID: PMC7604350.
  • Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–43. doi:10.1001/jamainternmed.2020.0994. Erratum in: JAMA Intern Med. 2020 Jul 1;180(7):1031. PMID: 32167524; PMCID: PMC7070509.
  • Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438–e440. doi:10.1016/S2352-3026(20)30145-9. Epub 2020 May 11. PMID: 32407672; PMCID: PMC7213964.
  • Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145–8. doi:10.1016/j.cca.2020.03.022. Epub 2020 Mar 13. PMID: 32178975; PMCID: PMC7102663.
  • Zhai Z, Kan Q, Li W, Qin X, Qu J, Shi Y, Xu R, Xu Y, Zhang Z, Wang C, DissolVE-2 investigators DissolVE-2 investigators. VTE risk profiles and prophylaxis in medical and surgical inpatients: the identification of chinese hospitalized patients’ risk profile for venous thromboembolism (DissolVE-2)-a cross-sectional study. Chest. 2019;155(1):114–22. doi:10.1016/j.chest.2018.09.020. Epub 2018 Oct 6. PMID: 30300652.
  • Buijsers B, Yanginlar C, Maciej-Hulme ML, de Mast Q, van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine. 2020;59:102969. doi:10.1016/j.ebiom.2020.102969. Epub 2020 Aug 25. PMID: 32853989; PMCID: PMC7445140.
  • Ayerbe L, Risco C, Ayis S. The association between treatment with heparin and survival in patients with Covid-19. J Thromb Thrombolysis. 2020;50(2):298–301. doi:10.1007/s11239-020-02162-z. PMID: 32476080; PMCID: PMC7261349.
  • van Haren FMP, Page C, Laffey JG, Artigas A, Camprubi-Rimblas M, Nunes Q, Smith R, Shute J, Carroll M, Tree J, et al. Nebulised heparin as a treatment for COVID-19: scientific rationale and a call for randomised evidence. Crit Care. 2020;24(1):454. doi:10.1186/s13054-020-03148-2. PMID: 32698853; PMCID: PMC7374660.
  • Nieuwenhuis HK, Albada J, Banga JD, Sixma JJ. Identification of risk factors for bleeding during treatment of acute venous thromboembolism with heparin or low molecular weight heparin. Blood. 1991;78(9):2337–43. PMID: 1657248. doi:10.1182/blood.V78.9.2337.bloodjournal7892337.
  • Cossette B, Pelletier ME, Carrier N, Turgeon M, Leclair C, Charron P, Echenberg D, Fayad T, Farand P. Evaluation of bleeding risk in patients exposed to therapeutic unfractionated or low-molecular-weight heparin: a cohort study in the context of a quality improvement initiative. Ann Pharmacother. 2010;44(6):994–1002. Epub 2010 May 4. PMID: 20442353. doi:10.1345/aph.1M615.
  • Arepally GM. Heparin-induced thrombocytopenia. Blood. 2017;129(21):2864–72. doi:10.1182/blood-2016-11-709873. Epub 2017 Apr 17. PMID: 28416511; PMCID: PMC5445568.
  • Mycroft-West CJ, Su D, Pagani I, Rudd TR, Elli S, Gandhi NS, Guimond SE, Miller GJ, Meneghetti MCZ, Nader HB, et al. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the spike s1 receptor-binding domain with heparin. Thromb Haemost. 2020;120(12):1700–15. doi:10.1055/s-0040-1721319. Epub 2020 Dec 23. PMID: 33368089; PMCID: PMC7869224.
  • Ali MK, Kim RY, Brown AC, Donovan C, Vanka KS, Mayall JR, Liu G, Pillar AL, Jones-Freeman B, Xenaki D, et al. Critical role for iron accumulation in the pathogenesis of fibrotic lung disease. J Pathol. 2020;251(1):49–62. doi:10.1002/path.5401. Epub 2020 Mar 30. PMID: 32083318.
  • Toblli JE, Cao G, Giani JF, Dominici FP, Angerosa M. Markers of oxidative/nitrosative stress and inflammation in lung tissue of rats exposed to different intravenous iron compounds. Drug Des Devel Ther. 2017;11:2251–63. doi:10.2147/DDDT.S132612. PMID: 28814833; PMCID: PMC5546731.
  • Carota G, Ronsisvalle S, Panarello F, Tibullo D, Nicolosi A, Li Volti G. Role of iron chelation and protease inhibition of natural products on COVID-19 infection. JCM. 2021; May 2510(11):2306. PMID: 34070628; PMCID: PMC8198259. doi:10.3390/jcm10112306.
  • Dalamaga M, Karampela I, Mantzoros CS. Commentary: could iron chelators prove to be useful as an adjunct to COVID-19 treatment regimens? Metabolism. 2020;108:154260. doi:10.1016/j.metabol.2020.154260. Epub 2020 May 8. PMID: 32418885; PMCID: PMC7207125.
  • Codd R, Richardson-Sanchez T, Telfer TJ, Gotsbacher MP. Advances in the chemical biology of desferrioxamine B. ACS Chem Biol. 2018;13(1):11–25. doi:10.1021/acschembio.7b00851. Epub 2017 Dec 4. PMID: 29182270.
  • Hershko C, Konijn AM, Nick HP, Breuer W, Cabantchik ZI, Link G. ICL670A: a new synthetic oral chelator: evaluation in hypertransfused rats with selective radioiron probes of hepatocellular and reticuloendothelial iron stores and in iron-loaded rat heart cells in culture. Blood. 2001;97(4):1115–22. doi: 10.1182/blood.v97.4.1115. PMID: 11159545.
  • Zhu BZ, Har-El R, Kitrossky N, Chevion M. New modes of action of desferrioxamine: scavenging of semiquinone radical and stimulation of hydrolysis of tetrachlorohydroquinone. Free Radic Biol Med. 1998;24(2):360–9. Erratum in: Free Radic Biol Med 1998 Mar 15;24(5):880. PMID: 9433912. doi:10.1016/S0891-5849(97)00220-7.
  • Liu W, Li H. COVID-19: attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. 2020; doi: 10.26434/chemrxiv.11938173.v8).
  • Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, Benoliel JJ, Becker C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20(9):515–6. doi:10.1038/s41577-020-0407-1. Erratum in: Nat Rev Immunol. 2020 Aug 10;: PMID: 32728221; PMCID: PMC7388427.
  • Kontoghiorghes GJ. Advances on chelation and chelator metal complexes in medicine. IJMS. 2020;21(7):2499. PMID: 32260293; PMCID: PMC7177276. doi:10.3390/ijms21072499.
  • Al-Horani RA, Kar S. Potential anti-SARS-CoV-2 therapeutics that target the post-entry stages of the viral life cycle: a comprehensive review. Viruses. 2020;12(10):1092. PMID: 32993173; PMCID: PMC7600245. doi:10.3390/v12101092.
  • Bataille S, Pedinielli N, Bergounioux JP. Could ferritin help the screening for COVID-19 in hemodialysis patients? Kidney Int. 2020;98(1):235–6. doi:10.1016/j.kint.2020.04.017. Epub 2020 Apr 22. PMID: 32471636; PMCID: PMC7175847.
  • Turi JL, Yang F, Garrick MD, Piantadosi CA, Ghio AJ. The iron cycle and oxidative stress in the lung. Free Radic Biol Med. 2004;36(7):850–7. doi:10.1016/j.freeradbiomed.2003.12.008. PMID: 15019970.
  • Dalskov L, Møhlenberg M, Thyrsted J, Blay-Cadanet J, Poulsen ET, Folkersen BH, Skaarup SH, Olagnier D, Reinert L, Enghild JJ, et al. SARS-CoV-2 evades immune detection in alveolar macrophages. EMBO Rep. 2020;21(12):e51252. doi:10.15252/embr.202051252. Epub 2020 Oct 28. PMID: 33112036; PMCID: PMC7645910.
  • Abobaker A. Can iron chelation as an adjunct treatment of COVID-19 improve the clinical outcome? Eur J Clin Pharmacol. 2020;76(11):1619–20. doi:10.1007/s00228-020-02942-9. Epub 2020 Jun 30. PMID: 32607779; PMCID: PMC7325475.
  • Visseren F, Verkerk MS, van der Bruggen T, Marx JJ, van Asbeck BS, Diepersloot RJ. Iron chelation and hydroxyl radical scavenging reduce the inflammatory response of endothelial cells after infection with Chlamydia pneumoniae or influenza A. Eur J Clin Invest. 2002;32(Suppl 1):84–90. doi:10.1046/j.1365-2362.2002.0320s1084.x. PMID: 11886437.
  • Yang Y, Ma J, Xiu J, Bai L, Guan F, Zhang L, Liu J, Zhang L. Deferoxamine compensates for decreases in B cell counts and reduces mortality in enterovirus 71-infected mice. Mar Drugs. 2014;12(7):4086–95. doi:10.3390/md12074086. PMID: 25003792; PMCID: PMC4113816.
  • Ballas SK, Zeidan AM, Duong VH, DeVeaux M, Heeney MM. The effect of iron chelation therapy on overall survival in sickle cell disease and β-thalassemia: a systematic review. Am J Hematol. 2018;93(7):943–52. doi:10.1002/ajh.25103. Epub 2018 Apr 28. PMID: 29635754.
  • Cappellini MD. Exjade(R) (deferasirox, ICL670) in the treatment of chronic iron overload associated with blood transfusion. Ther Clin Risk Manag. 2007;3(2):291–9. doi:10.2147/tcrm.2007.3.2.291. PMID: 18360637; PMCID: PMC1936310.
  • Botzenhardt S, Li N, Chan EW, Sing CW, Wong IC, Neubert A. Safety profiles of iron chelators in young patients with haemoglobinopathies. Eur J Haematol. 2017;98(3):198–217. doi:10.1111/ejh.12833. Epub 2017 Jan 19. PMID: 27893170.
  • He T. Cardiovascular magnetic resonance T2* for tissue iron assessment in the heart. Quant Imaging Med Surg. 2014;4(5):407–12. doi: 10.3978/j.issn.2223-4292.2014.10.05. PMID: 25392825; PMCID: PMC4213428.
  • Hynes MJ, O’Coinceanainn M. The kinetics and mechanisms of reactions of iron(III) with caffeic acid, chlorogenic acid, sinapic acid, ferulic acid and naringin. J Inorg Biochem. 2004;98(8):1457–64. doi: 10.1016/j.jinorgbio.2004.05.009. PMID: 15271524.
  • Genaro-Mattos TC, Maurício ÂQ, Rettori D, Alonso A, Hermes-Lima M . Correction: antioxidant activity of caffeic acid against iron-induced free radical generation-A chemical approach . PLoS One. 2015;10(11):e0142402. doi: 10.1371/journal.pone.0129963. Erratum in: PLoS One. 2015;10(11):e0142402. PMID: 26098639; PMCID: PMC4476807.
  • Langland J, Jacobs B, Wagner CE, Ruiz G, Cahill TM. Antiviral activity of metal chelates of caffeic acid and similar compounds towards herpes simplex, VSV-Ebola pseudotyped and vaccinia viruses. Antiviral Res. 2018;160:143–50. doi: 10.1016/j.antiviral.2018.10.021. Epub 2018 Oct 28. PMID: 30393014.
  • Weng JR, Lin CS, Lai HC, Lin YP, Wang CY, Tsai YC, Wu KC, Huang SH, Lin CW. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 2019;273:197767. doi:10.1016/j.virusres.2019.197767. Epub 2019 Sep 24. PMID: 31560964; PMCID: PMC7114872.
  • Kumar V, Dhanjal JK, Kaul SC, Wadhwa R, Sundar D. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. J Biomol Struct Dyn. 2021;39(11):3842–54. doi: 10.1080/07391102.2020.1772108. Epub 2020 Jun 1. PMID: 32431217; PMCID: PMC7284143.
  • Adem Ş, Eyupoglu V, Sarfraz I, Rasul A, Zahoor AF, Ali M, Abdalla M, Ibrahim IM, Elfiky AA. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine. 2021;85:153310. doi:10.1016/j.phymed.2020.153310. Epub 2020 Aug 22. PMID: 32948420; PMCID: PMC7442560.
  • Messner DJ, Surrago C, Fiordalisi C, Chung WY, Kowdley KV. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids. Biometals. 2017;30(5):699–708. Epub 2017 Aug 11. PMID: 28801864; PMCID: PMC5955385. doi:10.1007/s10534-017-0038-6.
  • Rainey NE, Moustapha A, Saric A, Nicolas G, Sureau F, Petit PX. Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov. 2019;5:150. doi:10.1038/s41420-019-0234-y. PMID: 31839992; PMCID: PMC6901436.
  • Jiao Y, Wilkinson J, 4th, C, Pietsch E, Buss JL, Wang W, Planalp R, Torti FM, Torti SV. Iron chelation in the biological activity of curcumin. Free Radic Biol Med. 2006;40(7):1152–60. doi: 10.1016/j.freeradbiomed.2005.11.003. PMID: 16545682.
  • Mursaleen L, Somavarapu S, Zariwala MG. Deferoxamine and curcumin loaded nanocarriers protect against rotenone-induced neurotoxicity. JPD. 2020;10(1):99–111. PMID: 31868679. doi:10.3233/JPD-191754.
  • Liu Z, Ying Y. The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front Cell Dev Biol. 2020;8:479. doi:10.3389/fcell.2020.00479. PMID: 32596244; PMCID: PMC7303286.
  • Lim L, Dang M, Roy A, Kang J, Song J. Curcumin allosterically inhibits the dengue NS2B-NS3 protease by disrupting its active conformation. ACS Omega. 2020;5(40):25677–86. doi:10.1021/acsomega.0c00039. PMID: 33073093; PMCID: PMC7557217.
  • Vajragupta O, Boonchoong P, Morris GM, Olson AJ. Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorg Med Chem Lett. 2005;15(14):3364–8. doi:10.1016/j.bmcl.2005.05.032. PMID: 15950462.
  • Soni VK, Mehta A, Ratre YK, Tiwari AK, Amit A, Singh RP, Sonkar SC, Chaturvedi N, Shukla D, Vishvakarma NK. Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur J Pharmacol. 2020;886:173551. doi:10.1016/j.ejphar.2020.173551. Epub 2020 Sep 12. PMID: 32931783; PMCID: PMC7832734.
  • Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. 2021;39(9):3347–57. doi:10.1080/07391102.2020.1763201. Epub 2020 May 13. PMID: 32362245; PMCID: PMC7232884.
  • Naidu SAG, Tripathi YB, Shree P, Clemens RA, Naidu AS. Phytonutrient inhibitors of SARS-CoV-2/NSP5-encoded main protease (Mpro) autocleavage enzyme critical for COVID-19 pathogenesis. J Diet Suppl. 2021;:1–28. Epub ahead of print. PMID: 34821532. doi:10.1080/19390211.2021.2006388.
  • Rajagopal K, Varakumar P, Baliwada A, Byran G. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Futur J Pharm Sci. 2020;6(1):104. doi:10.1186/s43094-020-00126-x. Epub 2020 Oct 16. PMID: 33215042; PMCID: PMC7562761.
  • Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997;29(3):315–31. doi:10.1016/s0306-3623(96)00474-0. PMID: 9378235.
  • Camiolo G, Tibullo D, Giallongo C, Romano A, Parrinello NL, Musumeci G, Di Rosa M, Vicario N, Brundo MV, Amenta F, et al. α-Lipoic acid reduces iron-induced toxicity and oxidative stress in a model of iron overload. IJMS. 2019;20(3):609. PMID: 30708965; PMCID: PMC6387298. doi:10.3390/ijms20030609.
  • Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res. 2013;57(1):114–25. doi:10.1002/mnfr.201200608. PMID: 23293044.
  • Graf E, Empson KL, Eaton JW. Phytic acid. A natural antioxidant. J Biol Chem. 1987;262(24):11647–50. PMID: 3040709.
  • Zajdel A, Wilczok A, Węglarz L, Dzierżewicz Z. Phytic acid inhibits lipid peroxidation in vitro. Biomed Res Int. 2013;2013:147307. doi:10.1155/2013/147307. Epub 2013 Oct 24. PMID: 24260736; PMCID: PMC3821898.
  • Kamp DW, Israbian VA, Yeldandi AV, Panos RJ, Graceffa P, Weitzman SA. Phytic acid, an iron chelator, attenuates pulmonary inflammation and fibrosis in rats after intratracheal instillation of asbestos. Toxicol Pathol. 1995;23(6):689–95. PMID: 8772254. doi:10.1177/019262339502300606.
  • Otake T, Mori H, Morimoto M, Miyano K, Ueba N, Oishi I, Kunita N, Kurimura T. Anti-HIV-1 activity of myo-inositol hexaphosphoric acid (IP6) and myo-inositol hexasulfate(IS6). Anticancer Res. 1999; Sep-Oct19(5A):3723–6. PMID: 10625947.
  • Ayres JS. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2020;2(7):572–85. doi:10.1038/s42255-020-0237-2. Epub 2020 Jun 30. PMID: 32694793; PMCID: PMC7325641.
  • Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. doi:10.1038/s41467-019-13668-3. PMID: 31900386; PMCID: PMC6941980.
  • Mullen PJ, Garcia G, Jr, Purkayastha A, Matulionis N, Schmid EW, Momcilovic M, Sen C, Langerman J, Ramaiah A, Shackelford DB, et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun. 2021;12(1):1876. doi:10.1038/s41467-021-22166-4. PMID: 33767183; PMCID: PMC7994801.
  • Moghimi N, Di Napoli M, Biller J, Siegler JE, Shekhar R, McCullough LD, Harkins MS, Hong E, Alaouieh DA, Mansueto G, et al. The neurological manifestations of post-acute sequelae of SARS-CoV-2 infection. Curr Neurol Neurosci Rep. 2021;21(9):44. doi:10.1007/s11910-021-01130-1. PMID: 34181102; PMCID: PMC8237541.
  • Parker AM, Brigham E, Connolly B, McPeake J, Agranovich AV, Kenes MT, Casey K, Reynolds C, Schmidt KFR, Kim SY, et al. Addressing the post-acute sequelae of SARS-CoV-2 infection: a multidisciplinary model of care. Lancet Respir Med. 2021;9(11):1328–41. Epub 2021 Oct 19. PMID: 34678213; PMCID: PMC8525917. doi:10.1016/S2213-2600(21)00385-4.
  • Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, Villapol S. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11(1):16144. doi:10.1038/s41598-021-95565-8. PMID: 34373540; PMCID: PMC8352980.
  • Ramadan MS, Bertolino L, Zampino R, Durante-Mangoni E, Durante-Mangoni E, Iossa D, Bertolino L, Ursi MP, D’Amico F, Karruli A, et al. Monaldi hospital cardiovascular infection study group. Cardiac sequelae after coronavirus disease 2019 recovery: a systematic review. Clin Microbiol Infect. 2021;27(9):1250–61. Epub 2021 Jun 23. PMID: 34171458; PMCID: PMC8220864. doi:10.1016/j.cmi.2021.06.015.
  • Gameil MA, Marzouk RE, Elsebaie AH, Rozaik SE. Long-term clinical and biochemical residue after COVID-19 recovery. Egypt Liver J. 2021;11(1):74. doi:10.1186/s43066-021-00144-1.Epub 2021 Sep 12. PMID: 34777873; PMCID: PMC8435147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.