343
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effective Beneficiation of a Fine Coking Coal Using a Novel Flotation Scheme

, , , , &
Pages 40-51 | Received 08 Feb 2016, Accepted 06 May 2016, Published online: 06 Jul 2016

References

  • Xu, Z., J. Liu, J. Choung, and Z. Zhou. 2003. Electro kinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing 68: 183–196.
  • Gui, X., J. Liu, Y. Cao, Z. Miao, S. Li, Y. Xing, and D. Wang. 2015. Coal preparation technology: Status and development in China. Energy and Environment 26(6–7): 997–1013.
  • Gui, X., J. Liu, Y. Cao, Y. Xing, Y. Deng, and S. Li. 2016. Effect of intergrown particles liberation on difficult-to-separate coking coal flotation. Physicochemical Problems of Mineral Processing 52(1): 279–294.
  • Vanangamudi, M., C. V. Kumar, and T. C. Rao. 1988. Separation characteristics of different size and density fractions in batch coal flotation. Bulletin of Materials Science 10: 435–442.
  • Tao, D., B. Li, S. Johnson, and P. K. Parekh. 2002. A flotation study of refuse pond coal slurry. Fuel Processing Technology 76: 201–210.
  • Bakalarz, A., and J. Drzymala. 2013. Interrelation of the Fuerstenau upgrading curves with kinetics of separation. Physicochemical Problems of Mineral Processing 49(2): 443–451.
  • Dey, S., and K. K. Bhattacharyya. 2007. Split and collectorless flotation to medium coking coal fines for multi-product zero waste concept. Fuel Processing Technology 88: 585–590.
  • Jena, M. S., S. K. Biswal, S. P. Das, and P. S. R. Reddy. 2008. Comparative study of the performance of conventional and column flotation when treating coking coal fines. Fuel Processing Technology 89: 1409–1415.
  • Amini, E., M. Oliazadeh, and M. Kolahdoozan. 2009. Kinetic comparison of biological and conventional flotation of coal. Mineral Engineering 22: 244–247.
  • Oats, W. J., O. Ozdemir, and A. V. Nguyen. 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Mineral Engineering 23: 413–419.
  • Engel, M. D., P. D. Middlebrook, and G. J. Jameson. 1997. Advances in the study of high intensity conditioning as a means of improving mineral flotation performance. Mineral Engineering 10(1): 55–68.
  • Cheng, G., L. Ma, X. Gui, J. Liu, and Y. Wang. 2013. Study on kinetic modelling for fine coal flotation. International Journal of Coal Preparation and Utilization 33: 12–25.
  • Gui, X., G. Cheng, J. Liu, Y. Cao, S. Li, and Q. He. 2013. Effects of energy consumption on the separation performance of fine coal. Fuel Processing Technology 115: 192–200.
  • Akdemir, U., and I. Sonmez. 2003. Investigation of coal and ash recovery and entrainment in flotation. Fuel Processing Technology 82: 1–9.
  • Wang, B., and Y. Peng. 2013. The behavior of mineral matter in fine coal flotation using saline water. Fuel 109: 309–315.
  • Liu, D., and Y. Peng. 2014. Reducing the entrainment of clay minerals in flotation using tap and saline water. Powder Technology 253: 216–222.
  • Gui, X., J. Liu, Y. Cao, G. Cheng, S. Li, and L. Wu. 2014. Flotation process design based on energy input and distribution. Fuel Processing Technology 120: 61–70.
  • Gui, X., Y. Wang, H. Zhang, and S. Li. 2014. Effect of two-stage stirred pulp-mixing on coal flotation. Physicochemical Problems of Mineral Processing 50(1): 299–310.
  • Xing, Y., X. Xiahui Gui, J. Liu, Y. Yijun Cao, Y. Zhang, and S. Li. 2016. Flotation behavior of hard-to-separate and high-ash fine coal. Physicochemical Problems of Mineral Processing 52(2): 703–718.
  • Quast, K., L. Ding, D. Fornasiero, and J. Ralston. 2008. Effect of slime clay particles on coal flotation. Proceedings of Chemeca, Newcastle, September 28-October 1, Australia.
  • Oats, W. J., O. Ozdemir, and A. V. Nguyen. 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Minerals Engineering 23: 413–419.
  • Han, O. H., M. K. Kim, B. G. Kim, N. Subasinghe, and C. H. Park. 2014. Fine coal beneficiation by column flotation. Fuel Processing Technology 126: 49–59.
  • Reddy, P. S. R., S. G. Kumar, K. K. Bhattacharyya, S. R. S. Sastri, and K. S. Narasimhan. 1988. Flotation column for fine coal beneficiation. Mineral Engineering 24(1–2): 161–172.
  • Valderrama, L., and J. Rubio. 1998. High intensity conditioning and the carrier flotation of gold fine particle. International Journal of Mineral Processing 52(4): 273–285.
  • Anthony, R. M., D. F. Kelsall, and W. J. Trahar. 1975. The effect of particle size on the activation and flotation of sphalerite. Proceedings of the Australasian Institute of Mining and Metallurgy 254: 47–58.
  • Trahar, W. J. 1976. The selective flotation of galena from sphalerite with special reference to the effect of particle size. International Journal of Mineral Processing 3: 151–166.
  • Small, G. L., S. R. Grano, J. Ralston, and N. W. Johnson. 1997. Methods to increase fine mineral recovery in the Mount Isa Mines lead/zinc concentrator. Mineral Engineering 10(1): 1–15.
  • Xie, G., L. Wu, Z. Ou, and H. Yu. 2009. Research on fine coal classified flotation process and key technology. Procedia Earth and Planetary Science 1(1): 701–705.
  • Gui, X., G. Cheng, J. Liu, S. Li, Y. Wang, and Y. Cao. 2012. Process characteristics of heterogeneous fine mud in the coal flotation. Journal of China Coal Society 37(2): 301–309.
  • Dai, Z., D. Fornasiero, and J. Ralston. 2000. Particle-bubble collision models—A review. Advances in Colloid and Interface Science 85(2–3): 231–256.
  • Bazin, C., and M. Proulx. 2001. Distribution of reagents down a flotation bank to improve the recovery of coarse particles. International Journal of Mineral Processing 61: 1–12.
  • Neethling, S. J., and J. J. Cilliers. 2002. Solids motion inflowing froths. Chemical Engineering Science 57(4): 607–615.
  • Zheng, X., J. P. Franzidis, and N. W. Johnson. 2006. An evaluation of different models of water recovery in flotation. Mineral Engineering 19(9): 871–882.
  • Yianatos, J., and F. Contreras. 2010. Particle entrainment model for industrial flotation cells. Powder Technology 197(3): 260–267.
  • Seher, A. 2012. Phenomena in the froth phase of flotation—A review. International Journal of Mineral Processing 102–103:1–12.
  • Binks, B. 2002. Particles as surfactants-similarities and differences. Current Opinion in Colloid & Interface Science 7: 21–41.
  • Ata, S., N. Ahmed, and G. J. Jameson. 2003. A study of bubble coalescence in flotation froths. International Journal of Mineral Processing 72: 255–266.
  • Aktas, Z., J. J. Cilliers, and A. W. Banford. 2008. Dynamic froth stability: Particle size, airflow rate and conditioning time effects. International Journal of Mineral Processing 87(1–2): 65–71.
  • Liang, L., Z. Li, Y. Peng, J. Tan, and G. Xie. 2015. Influence of coal particles on froth stability and flotation performance. Mineral Engineering 81: 96–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.