426
Views
12
CrossRef citations to date
0
Altmetric
Review

Effect of inorganic and organic additives on coal combustion: a review

ORCID Icon & ORCID Icon
Pages 749-766 | Received 13 Jun 2018, Accepted 11 Oct 2018, Published online: 23 Oct 2018

References

  • Akiyama, K., H. Pak, T. Tada, Y. Ueki, R. Yoshiie, and I. Naruse. 2010. Ash deposition behavior of upgraded brown coal and bituminous coal. Energy and Fuels. doi:10.1021/ef9014313.
  • Altun, N. E., C. Hicyilmaz, and M. V. Kök. 2001. Effect of different binders on the combustion properties of lignite part I. Effect on thermal properties. Journal of Thermal Analysis and Calorimetry 65:787–95. doi:10.1023/A:1011915829632.
  • Altun, N. E., C. Hicyilmaz, and A. S. Bagci. 2003. Combustion characteristics of coal briquettes. 1. Thermal features. Energy and Fuels. doi:10.1021/ef0202891.
  • Babich, A., S. Yaroshevskii, A. Formos, A. Isidro, S. Ferreira, A. Cores, and L. Garcia. 1996. Increase of pulverized coal use efficiency in blast furnace. ISIJ International. doi:10.2355/isijinternational.36.1250.
  • Backreedy, R. I., L. M. Fletcher, J. M. Jones, L. Ma, M. Pourkashanian, and A. Williams. 2005. Co-firing pulverised coal and biomass: a modeling approach. Proceedings of the Combustion Institute. doi:10.1016/j.proci.2004.08.085.
  • Bae, J.-S., D.-W. Lee, Y.-J. Lee, S.-J. Park, J.-C. Hong, J.-G. Kim, B.-H. Lee, C.-H. Jeon, C. Han, and Y.-C. Choi. 2013. Production of the glycerol-impregnated hybrid coal and its characterization. Fuel. doi:10.1016/j.fuel.2013.10.022.
  • Bae, Jong-Soo., Dong-Wook Lee, Young-Joo Lee, Se-Joon Park, Ju-Hyoung Park, Jai-Chang Hong, Joeng-Geun Kim, S.-P. Yoon, H.-T. Kim, C. Han, et al. 2014. Improvement in coal content of coal-water slurry using hybrid coal impregnated with molasses. Powder Technology Elsevier B.V. doi:10.1016/j.powtec.2013.12.032.
  • Beker, Ü. G. 1997. Briquetting of Afşin-Elbistan lignite of Turkey using different waste materials. Fuel Processing Technology. doi:10.1016/S0378-3820(96)01081-8.
  • Blesa, M. J., V. Fierro, J. L. Miranda, R. Moliner, and J. M. Palacios. 2001. Effect of the pyrolysis process on the physicochemical and mechanical properties of smokeless fuel briquettes. Fuel Processing Technology. doi:10.1016/S0378-3820(01)00209-0.
  • Bush, J. H. 2013. Coal additive for improved furnace operation. US2013/0260322A1, issued 2013.
  • Chandra, A., and H. Chandra. 2004. Impact of Indian and imported coal on Indian thermal power plants. Journal of Scientific and Industrial Research 63 (2):156–62.
  • Cheng, J., F. Zhou, X. Xuan, J. Liu, J. Zhou, and K. Cen. 2016. Cascade chain catalysis of coal combustion by Na-Fe-Ca composite promoters from industrial wastes. Fuel. doi:10.1016/j.fuel.2016.05.064.
  • Cheng, J., F. Zhou, X. Xuan, J. Liu, J. Zhou, and K. Cen. 2017. Comparison of the catalytic effects of eight industrial wastes rich in Na, Fe, Ca and Al on anthracite coal combustion. Fuel Elsevier Ltd. doi:10.1016/j.fuel.2016.09.083.
  • “Coal Grades.” 2014. Ministry of coal. https://coal.nic.in/content/coal-grades.
  • Cornell, J. H. 1864. Improved Artificial Fuel, issued 1864.
  • Daood, S. S., G. Ord, T. Wilkinson, and W. Nimmo. 2014a. Fuel additive technology - NOx reduction, combustion efficiency and fly ash improvement for coal fired power stations. Fuel Elsevier Ltd. doi:10.1016/j.fuel.2014.04.032.
  • Daood, S. S., G. Ord, T. Wilkinson, and W. Nimmo. 2014b. Investigation of the influence of metallic fuel improvers on coal combustion/pyrolysis. Energy and Fuels. doi:10.1021/ef402213f.
  • Das, T., B. K. Saikia, D. K. Dutta, D. Bordoloi, and B. P. Baruah. 2015. Agglomeration of low rank Indian coal fines with an organic binder and the thermal behavior of the agglomerate produced: Part I. Fuel. doi:10.1016/j.fuel.2014.10.050.
  • Di, Z., T. Chun, H. Long, Q. Meng, P. Wang, and J. Yang. 2017. Study on the effects of catalyst on combustion characteristics of pulverized coal. Metallurgical Research & Technology. doi:10.1051/metal/2016054.
  • Doggali, P., H. Kusaba, H. Einaga, S. Bensaid, S. Rayalu, Y. Teraoka, and N. Labhsetwar. 2011. Low-cost catalysts for the control of Indoor CO and PM emissions from solid fuel combustion. Journal of Hazardous Materials 186(1):796–804. Elsevier B.V. doi:10.1016/j.jhazmat.2010.11.072.
  • Dondelewski, M. A. 1982. Carbonaceous pellets and method of making. US4357145, issued 1982.
  • Donovan, P., and W. Tis. 2003. Synthetic fuel production method. US6558442B2, issued 2003. doi:10.1016/j.(73).
  • Dospoy, R. L., C. E. Raleigh, C. D. Harrison, and D. J. Akers. 1998. Pelletized fuel composition and method of manufacture. US5743924, issued 1998.
  • Eatough, C. N., G. W. Ford, and R. C. Lambert. 1998. Blast furnace fuel from reclaimed carbonaceous materials and relatd methods. US5752993, issued 1998.
  • “Facts about Coal and Minerals.” 2016. National mining association. https://nma.org/wp-content/uploads/2016/11/factbook2016-3.
  • Fangxian, L., L. Shizong, and C. Youzhi. 2009. Thermal analysis study of the effect of coal-burning additives on the combustion of coals. Journal of Thermal Analysis and Calorimetry 95 (2):633–38. doi:10.1007/s10973-008-9124-x.
  • Ford, G. W. 1996. Reclaiming and utilizing discarded and newly formed coke breeze, coal fines. And blast furnace revert materials, and related methods. US5487764, issued 1996.
  • Ford, G. W., R. C. Lambert, and R. G. Madsen. 1996. Process for recovering iron from iron-containing material. US5589118, issued 1996.
  • Gong, X., Z. Guo, and Z. Wang. 2010a. Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3. Combustion and Flame 157(2):351–56. The Combustion Institute. doi:10.1016/j.combustflame.2009.06.025.
  • Gong, X., Z. Guo, and Z. Wang. 2010b. Variation on anthracite combustion efficiency with CeO2 and and Fe2O3 addition by differential thermal analysis (DTA). Energy 35(2):506–11. Elsevier Ltd. doi:10.1016/j.energy.2009.10.017.
  • Gopalakrishnan, R., and C. H. Bartholomew. 1996. Effects of CaO, high-temperature treatment, carbon structure, and coal rank on intrinsic char oxidation rates. Energy and Fuels 10 (21):689–95. doi:10.1021/ef950172v.
  • Gupta, R. 2007. Advanced coal characterization: A review. Energy and Fuels. doi:10.1021/ef060411m.
  • Gurbuz-Beker, U., S. Kucukbayrak, and A. Ozer. 1998. Briquetting of Afsin-Elbistan lignite. Fuel Processing Technology. doi:10.1016/S0378-3820(98)00040-X.
  • Haykiri-Acma, H., A. Ersoy-Mericboyu, and S. Kucukbayrak. 2000. Combustion characteristics of blends of lignite and bituminous coal with different binder materials. Energy Sources. doi:10.1080/00908310050013929.
  • He, X. M., J. Qin, R. Z. Liu, Z. J. Hu, J. G. Wang, C. J. Huang, T. L. Li, and S. J. Wang. 2013. Catalytic combustion of inferior coal in the cement industry by thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2010.516324.
  • Heriyanto, H., W. K. Ernayati, C. Umam, and N. Margareta. 2015. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method. International Conference of Chemical and Material Engineering, Phuket, Thailand. doi:10.1063/1.4938311.
  • Kakaras, E., and P. Vourliotis. 1998. Coal combustion with simulated gas turbine exhaust gas and catalytic oxidation of the unburnt fuel. Fuel. doi:10.1016/S0016-2361(98)00043-X.
  • Khatami, R., and Y. A. Levendis. 2016. An overview of coal rank influence on ignition and combustion phenomena at the particle level. Combustion and Flame Elsevier Inc. doi:10.1016/j.combustflame.2015.10.031.
  • Kim, Y. K., L. F. Hao, J. I. Park, J. Miyawaki, I. Mochida, and S. H. Yoon. 2012. Catalytic activity and activation mechanism of potassium carbonate supported on perovskite oxide for coal char combustion. Fuel 94:516–22. Elsevier Ltd. doi:10.1016/j.fuel.2011.10.017.
  • Kinoshita, S., Y. Seiichi, D. Tetsuya, and T. Shigehisa. 2010. Demonstration of upgraded brown coal (UBC®) process by 600t/day plant. Kobelco Technology Review 29:93–98.
  • Kök, M. V., and C. Keskin. 2001. Calorific value determination of coals by DTA and ASTM methods. Comparative study. Journal of Thermal Analysis and Calorimetry 64 (3):1265–70. doi:10.1023/A:1011569701909.
  • Kpsel, R. F. W., and S. Halang. 1997. Catalytic influence of ash elements on NOx formation in char combustion under fluidzied bed conditions. Fuel. doi:10.1016/S0016-2361(96)00231-1.
  • Kriech, A. J. 2003. Coal binder compositions and methods. US6530966B1, issued 2003.
  • Landis, C. R. 1999. Combustible carbonaceous compositions and methods. US5893946, issued 1999.
  • Larionov, K. B., I. V. Mishakov, A. A. Gromov, and A. V. Zenkov. 2017. Influence of NaNO3 and CuSO4 catalytic additives on coal oxidation process kinetic dependencies. MATEC Web of Conferences. doi:10.1051/matecconf/20179101007.
  • Lee, B. H., S. Lkhagvadorj, J. S. Bae, Y. C. Choi, and C. H. Jeon. 2016. Combustion behavior of low-rank coal impregnated with glycerol. Biomass and Bioenergy 87:122–30. Elsevier Ltd. doi:10.1016/j.biombioe.2016.02.028.
  • Lee, D. W., J. S. Bae, Y. J. Lee, S. J. Park, J. C. Hong, B. H. Lee, C. H. Jeon, and Y. C. Choi. 2013. Two-in-one fuel combining sugar cane with low rank CO2 reduction effecst in pulverized-coal power plants. Environmental Scieence & Technology. doi:10.1021/es303341j.
  • Li, C., and K. Suzuki. 2009. Kinetics of perovskite catalyzed biomass tar combustion studied by thermogravimetry and differential thermal analysis. Energy and Fuels. doi:10.1021/ef800959f.
  • Li, L., Z. C. Tan, S. H. Meng, S. D. Wang, and D. Y. Wu. 2000. Kinetic study of the accelerating effect of coal-burning additives on the combustion of graphite. Journal of Thermal Analysis and Calorimetry 62 (3):681–85. doi:10.1023/A:1026769323844.
  • Li, Q., C. Zhao, X. Chen, W. Weifang, and L. Yingjie. 2009. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. Journal of Analytical and Applied Pyrolysis. doi:10.1016/j.jaap.2008.10.018.
  • Li, X. G., B. G. Ma, L. Xu, Z. T. Luo, and K. Wang. 2007. Catalytic effect of metallic oxides on combustion behavior of high ash coal. Energy and Fuels. doi:10.1021/ef070054v.
  • Liu, X. Z., Y. Liang, L. H. Liang, and F. X. Xu. 2014. Effect on coal physicochemical properties from added foreign chemicals. Advanced Materials Research. 10.4028/www.scientific.net/AMR.900.229.
  • Liu, Y., D. Che, and X. Tongmo. 2002. Catalytic reduction of SO2 during combustion of typical Chinese coals. Fuel Processing Technology. doi:10.1016/S0378-3820(02)00110-8.
  • Ma, B. G., G. L. Xiang, L. Xu, K. Wang, and X. G. Wang. 2006. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis. Thermochimica Acta. doi:10.1016/j.tca.2006.03.021.
  • Ma, L., J. M. Jones, M. Pourkashanian, and A. Williams. 2007. Modelling the combustion of pulverized biomass in an industrial combustion test furnace. Fuel. doi:10.1016/j.fuel.2006.12.019.
  • Major, B. J., and G. Radu. 2000. Briquette binder composition. US6013116, issued 2000.
  • Mashek, G. J. 1907. Process of preparing pulverulent materials for molding or briquetting. US852025, issued 1907.
  • Michalek, J. K., and T. J. Thomas. 2007. Synthetic fuel pellet and methods. US2007/0251143A1, issued 2007.
  • Mishra, A. 2009. Assessment of coal quality of some Indian coals. B.Tech. Thesis, Department of mining engineering, National Institute of Technology, Rourkela.
  • Montgomery, W. J. n.d. Standard laboratory test methods for coal and coke. In Analytical methods for coal and coal products, ed. C. Karr Jr., 192–246. New York: Academic Press; 1978.
  • Ozbas, K. E., M. V. Kok, and C. Hicyilmaz. 2003. DSC study of the combustion properties of Turkish coals. Journal of Thermal Analysis and Calorimetry 71:849–56. doi:10.1023/A:1023378226686.
  • Rahman, M., D. Pudasainee, and R. Gupta. 2017. Review on chemical upgrading of coal: Production processes, potential applications and recent developments. Fuel Processing Technology. doi:10.1016/j.fuproc.2016.12.010.
  • Sahu, S. G., A. Mukherjee, M. Kumar, A. K. Adak, P. Sarkar, S. Biswas, H. P. Tiwari, A. Das, and P. K. Banerjee. 2014. Evaluation of combustion behaviour of coal blends for use in pulverized coal injection (PCI). Applied Thermal Engineering 73(1):1014–21. Elsevier Ltd. doi:10.1016/j.applthermaleng.2014.08.071.
  • Saint-Just, J., and J. D. Kinderen. 1996. Catalytic combustion: From reaction mechanism to commercial applications. Catalysis Today 29:387–95. doi:10.1016/0920-5861(95)00309-6.
  • Sardessai, K. S., T. S. Pollok, and McMurray. 1993. Process for making moisture resistant briquettes. US5244473, issued 1993.
  • Shen, B., and Qinlei. 2006. Study on MSW catalytic combustion by TGA. Energy Conversion and Management. doi:10.1016/j.enconman.2005.08.016.
  • Shui-Jun, Y., X. Feng-Cheng, J. Bo-Yu, and Z. Peng-Fei. 2012. Influence study of organic and inorganic additive to coal combustion characteristic. Procedia Environmental Sciences Elsevier B.V. doi:10.1016/j.proenv.2012.01.304.
  • Skowronski, J. M. 1983. Study of graphite-manganese oxide catalyst via modified DTA curves. Journal of Thermal Analysis 27:69–76. doi:10.1007/BF01907322.
  • Sowa, J. M., and T. H. Fletcher. 2011. Investigation of an iron-based additive on coal pyrolysis and char oxidation at high heating rates. Fuel Processing Technology 92(12):2211–18. Elsevier B.V. doi:10.1016/j.fuproc.2011.07.007.
  • Sujanti, W., and D. K. Zhang. 1999. Laboratory study of spontaneous combustion of coal: the influence of inorganic matter and reactor size. Fuel. doi:10.1016/S0016-2361(98)00188-4.
  • Tang, Y. B., Z. H. Li, Y. I. Yang, D. J. Ma, and H. J. Ji. 2015. Effect of inorganic chloride on spontaneous combustion of coal. The Journal of the Southern African Institute of Mining and Metallurgy 115:87–92. doi:10.17159/2411-9717/2015/v115n2a1.
  • Tang, Y. 2017. Experimental investigation of applying MgCl2 and phosphates to to synergistically inhibit the spontaneous combustion of coal. Journal of the Engergy Institute Elsevier Ltd. doi:10.1252/jcej.16we209.
  • Taraba, B., R. Peter, and V. Slovák. 2011. Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Processing Technology 92(3):712–15. Elsevier B.V. doi:10.1016/j.fuproc.2010.12.003.
  • Tiwari, K. K., S. K. Basu, K. C. Bit, S. Banerjee, and K. K. Mishra. 2004. High-concentration coal-water slurry from Indian coals using newly developed additives. Fuel Processing Technology. doi:10.1016/S0378-3820(03)00095-X.
  • Tumbleson, H. 2006. Energy efficiency guide for industry in Asia. UNEP. http://www.energyefficiencyasia.org.
  • Umar, D. F., H. Usui, and B. Daulay. 2006. Change of combustion characteristics of Indonesian low rank coal due to upgraded brown coal process. Fuel Processing Technology. doi:10.1016/j.fuproc.2006.07.010.
  • Venkatesha, G., R. D. Satyanarayana Rao, and T. R. Narashime Gwoda. 2014. A review on Indian coal power plants and it’s impacts. International Journal of Engineering Research & Technology 3 (6):1598–602.
  • Wachowski, L., and M. Hofman. 2006. Application of TG-DTG analysis in the study of the ammoxidised carbon materials. Journal of Thermal Analysis and Calorimetry 83 (2):379–83. doi:10.1007/s10973-005-6987-y.
  • Wei-Ping, P. 1988. Effect of calcium chloride and calcium acetate on the reactivity of a lignite coal at low heating rate. Thermochimica Acta 125:285–94. doi:10.1016/0040-6031(88)87228-9.
  • Wenqing, L., L. Wang, Y. Qiao, J. Y. Lin, M. Wang, and L. Chang. 2015. Effect of atmosphere on the release behavior of alkali and alkaline earth metals during coal oxy-fuel combustion. Fuel 139:164–70. Elsevier Ltd. doi:10.1016/j.fuel.2014.08.056.
  • White, D. H. 1999. Pelletizing and briquetting of coal fines using binders produced by liquefaction of biomass. US5916826, issued 1999.
  • Wu, Z., X. Ling, Z. Wang, and Z. Zhang. 1998. Catalytic effects on the ignition temperature of coal. Fuel 77:891–93. doi:10.1002/elps.201400496.This.
  • Yildirim, M., and G. Ozbayoglu. 2004. Briquetting of Tuncbilek lignite fines by using ammonium nitrohumate as a binder. Mineral Processing and Extractive Metallurgy. doi:10.1179/0371955042250046.
  • Yin, K., Y. M. Zhou, Q. Z. Yao, C. Fang, and Z. W. Zhang. 2012. Thermogravimetric analysis of the catalytic effect of metallic compounds on the combustion behaviors of coals. Reaction Kinetics, Mechanisms and Catalysis 106 (2):369–77. doi:10.1007/s11144-012-0444-2.
  • Zhang, L.-M., Z.-C. Tan, S.-D. Wang, and W. Di-Yong. 1997. Combustion calorimetric and thermogravimetric studies of graphite and coals doped with a coal-burning additive. Thermochimica Acta. doi:10.1016/S0040-6031(97)00130-5.
  • Zou, C., L. Wen, S. Zhang, C. Bai, and G. Yin. 2014. Evaluation of catalytic combustion of pulverized coal for use in pulverized coal injection (PCI) and its influence on properties of unburnt chars. Fuel Processing Technology 119:136–45. Elsevier B.V. doi:10.1016/j.fuproc.2013.10.022.
  • Zou, C., and J. Zhao. 2017. Investigation of iron-containing powder on coal combustion behavior. Journal of the Energy Institute. doi:10.1016/j.joei.2016.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.