316
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling and optimization of the pyrolysis of low-rank lignite by central composite design (CCD) method

ORCID Icon &
Pages 655-665 | Received 30 May 2019, Accepted 12 Aug 2019, Published online: 22 Aug 2019

References

  • Aksoy, D. O., P. Aytar, Y. Toptas, A. Cabuk, S. Koca, and H. Koca. 2014. Physical and physicochemical cleaning of lignite and the effect of cleaning on biodesulphurization. Fuel 132:158–64. doi:10.1016/j.fuel.2014.04.090.
  • Aksoy, D. O., S. Koca, and H. Koca. October 6–8, 2010. Cleaning of Eskişehir Koyunagılı region lignite fines with high ash and high sulphur content by flotation. Proceedings of the XII. International Mineral Processing Symposium, Cappadocia, Nevşehir, Turkey, 911–19.
  • Aksoy, D. O., and E. Sagol. 2016. Application of central composite design method to coal flotation: Modelling, optimization and verification. Fuel 183:609–16. doi:10.1016/j.fuel.2016.06.111.
  • Barzegar, R., S. Avsaroglu, A. Yozgatligil, and A. T. Atimtay. 2018. Pyrolysis characteristics of Turkish lignites in N2 and CO2 environments. Energy Sources Part A: Recovery Utilization and Environmental Effects 40 (20):2467–75. doi:10.1080/15567036.2018.1502845.
  • Byambajav, E., H. Paysepar, L. Nazari, and C. C. Xu. 2018. Co-pyrolysis of lignin and low rank coal for the production of aromatic oils. Fuel Processing Technology 181:1–7. doi:10.1016/j.fuproc.2018.09.008.
  • Güllü, G., T. Durusoy, T. Özbaş, A. Tanyolac, and Y. Yürüm. 1992. Biodesulphurization of coal. In Clean utilization of coal, 185–205. Springer.
  • Khayet, M., A. Y. Zahrim, and N. E. Hilal. 2011. Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chemical Engineering Journal 167:77–83. doi:10.1016/j.cej.2010.11.108.
  • Khuri, A., and S. Mukhopadhyay. 2010. Response surface methodology. WIREs Computational Statistics 128–49. doi:10.1002/wics.73.
  • Kılıç, M., E. Pütün, and A. E. Pütün. 2014. Optimization of Euphorbia rigida fast pyrolysis conditions by using response surface methodology. Journal of Analytical and Applied Pyrolysis 110:163–71. doi:10.1016/j.jaap.2014.08.018.
  • Koca, H., S. Koca, and O. M. Koçkar. 2000. Upgrading of Kütahya region lignites by mild pyrolysis and high intensity dry magnetic separation. Minerals Engineering 13 (6):657–61. doi:10.1016/S0892-6875(00)00047-9..
  • Koca, H., S. Koca, and O. M. Koçkar. 2007. Desulphurisation of lignites by slow, fast and flash pyrolysis and high intensity dry magnetic separation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29 (16):1457–70. doi:10.1080/00908310600625772.
  • Koca, S., D. O. Aksoy, A. Cabuk, P. Aytar, E. Sagol, Y. Toptas, S. Oluklulu, and H. Koca. 2017. Evaluation of combined lignite cleaning processes, flotation and microbial treatment, and its modelling by Box Behnken methodology. Fuel 192:178–86. doi:10.1016/j.fuel.2016.12.015.
  • Leng, L., and H. Huang. 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology 270:627–42. doi:10.1016/j.biortech.2018.09.030.
  • Ma, J., B. Su, G. Wen, Q. Yang, Q. Ren, Y. Yang, and H. Xing. 2017. Pyrolysis of pulverized coal to acetylene in magnetically rotating hydrogen plasma reactor. Fuel Processing Technology 167:721–29. doi:10.1016/j.fuproc.2017.06.022.
  • Montgomery, D. C. 1991. Design and analysis of experiments. Singapore: John Wiley&Sons.
  • Onay, O. 2007. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixed bed reactor. Fuel 86:1452–60. doi:10.1016/j.fuel.2006.12.017.
  • Onay, O. 2014. The catalytic Co-pyrolysis of waste tires and pistachio seeds. Energy Sources, Part A: Recovery Utilization and Environmental Effects 36 (18):2070–77. doi:10.1080/15567036.2013.791900.
  • Onay, O., and H. Koca. 2015. Determination of synergetic effect in co-pyrolysis of lignite and waste tyre. Fuel 150:169–74. doi:10.1016/j.fuel.2015.02.041.
  • Safdari, M. S., E. Amini, D. R. Weise, and T. H. Fletcher. 2019. Heating rate and temperature effects on pyrolysis products from live wildland fuels. Fuel 242:295–304. doi:10.1016/j.fuel.2019.01.040.
  • Turkey lignite reserves. Accessed February 25, 2019. http://www.enerji.gov.tr/en-US/Pages/Coal.
  • Xia, W., G. Xie, and Y. Peng. 2015. Recent advances in beneficiation for low rank coals. Powder Technology 277:206–21. doi:10.1016/j.powtec.2015.03.003.
  • Xue, F., D. Li, Y. Guo, X. Liu, X. Zhang, Q. Zhou, and B. Ma. 2017. Technical progress and the prospect of low-rank coal pyrolysis in China. Energy Technology 5 (11):1897–907. doi:10.1002/ente.201700203.
  • Zaidi, A. G., I. N. M. Khamil, M. R. M. Isa, M. A. B. Jamaluddin, M. A. M. Ishak, and K. Ismail. June 1–3 2011. Pyrolysis of Jatropha Curcas L. Husk: Optimization Solid, Liquid and Gas Yield by using Response Surface Methodology (RSM). Proceedings of the 3rd International Symposium & Exhibition in Sustainable Energy &; Environment, Melaka, Malaysia, 78–83.doi:10.1109/ISESEE.2011.5977114.
  • Zhao, Y., H. Hu, L. Jin, X. He, and S. Zhu. 2010. Pyrolysis behaviour of macerals from weakly reductive coals. Energy and Fuels 24:6314–20. doi:10.1021/ef101026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.