234
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Experimental study of the influence of water on spontaneous combustion of coal containing pyrite

, , , &
Pages 1357-1372 | Received 07 Jun 2019, Accepted 07 Jan 2020, Published online: 10 Jan 2020

References

  • Bai, G., X. Zhou, D. Song, and X. Li. 2017. Research on coal’s combustion characteristics and kinetics parameters as a function of its metamorphic degree. Journal of Safety Science and Technology 27 (09):63–68. in Chinese.
  • Bhargava, S. K., A. Garg, and N. D. Subasinghe. 2009. In situ high-temperature phase transformation studies on pyrite. Fuel 88 (6):988–93. doi:10.1016/j.fuel.2008.12.005.
  • Blasco, M., M. J. Gazquez, S. M. Perez-Moreno, J. A. Grande, T. Valente, M. Santisteban, M. L. de la Torre, and J. P. Bolivar. 2016. Polonium behaviour in reservoirs potentially affected by acid mine drainage (AMD) in the Iberian Pyrite Belt (SW of Spain). Journal of Environmental Radioactivity 152:60–69. doi:10.1016/j.jenvrad.2015.11.008.
  • Boyabat, N., A. K. Ozer, S. Bayrakceken, and M. S. Gulaboglu. 2003. Thermal decomposition of pyrite in the nitrogen atmosphere. Fuel Processing Technology 85:179–88. doi:10.1016/S0378-3820(03)00196-6.
  • Cheng, H., Q. Liu, M. Huang, S. Zhang, and R. L. Frost. 2013. Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite. Thermochimica Acta 555:1–6. doi:10.1016/j.tca.2012.12.025.
  • Cheng, H., Q. Liu, and S. Zhang. 2014. Evolved gas analysis of coal-derived pyrite/marcasite. Journal of Thermal Analysis and Calorimetry 116 (2):887–94. doi:10.1007/s10973-013-3595-0.
  • Deng, C., F. Dai, H. Deng, and S. Wu. 2016. Influence of water solvent effect on oxidation characteristics of coal. Journal of Safety Science and Technology 12 (3):88–93.
  • Grovest, S. J., J. Williamson, and A. Sanyal. 1987. Decomposition of pyrite during pulverized coal combustion. Fuel 66 (4):461–66. doi:10.1016/0016-2361(87)90148-7.
  • Guo, J., H. Wen, X. Zheng, Y. Liu, and X. Cheng. 2019. A method for evaluating the spontaneous combustion of coal by monitoring various gases. Process Safety and Environmental Protection 126:223–31. doi:10.1016/j.psep.2019.04.014.
  • He, Q. 2004. Study on experiment and computer simulation of coal oxidation of low temperature and whole spontaneous process. Beijing: China University of Mining and Technology. in Chinese.
  • Hu, G., K. Dam-Johansen, S. Wedel, and J. Hansen. 2006. Decomposition and oxidation of pyrite. Progress in Energy and Combustion Science 32 (3):295–314. doi:10.1016/j.pecs.2005.11.004.
  • Hu, R., S. Gao, F. Zhao, Q. Shi, T. Zhang, and J. Zhang. 2008. Thermal analysis kinetics. Beijing: Science Press. in Chinese.
  • Jing, J., D. Wu, J. Mou, Q. Zhang, and F. Pan. 2017. Macromolecular structure evolution and its significance for perhydrous coal under drying and pyrolysis conditions. Drying Technology 35 (1):1398–411. doi:10.1080/07373937.2017.1331357.
  • Jing, J., W. Yang, Y. Cheng, Z. Liu, Q. Zhang, and K. Zhao. 2019. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification. Fuel 35 (11):559–72. doi:10.1016/j.fuel.2018.11.057.
  • Lee, S. H., and K. S. Eung. 1997. Effect of molten caustic leaching on the combustion characteristics of anthracite. Fuel 239:241–46. doi:10.1016/S0016-2361(96)00207-4.
  • Li, X., Z. Jin, G. Bai, J. Wang, F. Gao, and J. Linghu. 2019. Experimental study on the influence of water immersion on spontaneous combustion of anthracite with high concentrations of sulfur-bearing minerals. Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-019-09073-z.
  • Li, X., Y. Shang, Z. Chen, X. Chen, Y. Niu, M. Yang, and Y. Zhang. 2017. Study of spontaneous combustion mechanism and heat stability of sulfide minerals powder based on thermal analysis. Powder Technology 309:68–73. doi:10.1016/j.powtec.2016.12.040.
  • Luo, J., M. Wu, and Z. Yuan. 2017. Biological bromate reduction driven by methane in a membrane biofilm reactor. Environmental Science & Technology Letters 12 (4):562–66. doi:10.1021/acs.estlett.7b00488.
  • Mohalik, N. K., E. Lester, and I. S. Lowndes. 2017. Review of experimental methods to determine spontaneous combustion susceptibility of coal-Indian context. International Journal of Mining, Reclamation and Environment 31:301–22. doi:10.1080/17480930.2016.1232334.
  • Murphy, R., and D. R. Strongin. 2009. Surface reactivity of pyrite and related sulfides. Surface Science Reports 64 (1):1–45. doi:10.1016/j.surfrep.2008.09.002.
  • Naktiyok, J. 2018. Determination of the self-heating temperature of coal by means of TGA analysis. Energy & Fuels 32 (2):2299–305. doi:10.1021/acs.energyfuels.7b02296.
  • Qiao, L., C. Deng, F. Dai, and Y. Fan. 2019. Experimental study on a metal-chelating agent inhibiting spontaneous combustion of coal. Energy & Fuels 33 (9):9232–40. doi:10.1021/acs.energyfuels.9b01775.
  • Qu, L., D. Song, and B. Tan. 2016. Research on the critical temperature and Stage characteristics for the spontaneous combustion of different metamorphic degrees of coal. International Journal of Coal Preparation and Utilization 38 (5):221–36. doi:10.1080/19392699.2016.1226170.
  • Reich, M. H., I. K. Snook, and H. K. Wagenfeld. 1992. A fractal interpretation of the effect of drying on the pore structure of Victorian brown coal. Fuel 71:669–72. doi:10.1016/0016-2361(92)90170-S.
  • Shi, Q., B. Qin, Q. Bi, and B. Qu. 2018. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China. Fuel 226:307–15. doi:10.1016/j.fuel.2018.04.027.
  • Silvera, S. 2013. TG-FTIR and kinetics of devolatilization of Sulcis coal. Journal of Analytical and Applied Pyrolysis 104:95–102. doi:10.1016/j.jaap.2013.09.002.
  • Tang, Y., Z. Li, Y. Yang, N. Song, and D. Ma. 2013. Oxidation experiment of coal spontaneous combustion model compounds. Asian Journal of Chemistry 25 (1):441–46. doi:10.14233/ajchem.
  • Tao, X., D. Wang, and Q. He. 2013. The study of the critical moisture content at which coal has the most high tendency to spontaneous combustion. International Journal of Coal Preparation and Utilization 33 (3):117–27. doi:10.1080/19392699.2013.769435.
  • Wang, C., Y. Yang, and Y. T. Tsai. 2016. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. Journal of Thermal Analysis and Calorimetry 126 (3):1591–602. doi:10.1007/s10973-016-5685-2.
  • Wang, D. 2008. Mine fires. Jiangsu: China University of Mining and Technology press.
  • Wang, H., and C. Chen. 2015. Experimental study on greenhouse gas emissions caused by spontaneous coal combustion. Energy & Fuels 29 (8):5213–21. doi:10.1021/acs.energyfuels.5b00327.
  • Wang, H., and B. Z. Dlugogorski. 2003. Kennedy E M. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modeling. Progress in Energy and Combustion Science 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, K., J. Deng, Y. Zhang, and C. Wang. 2018. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG-FTIR and in situ IR analysis. Journal of Thermal Analysis and Calorimetry 132:591–98. doi:10.1007/s10973-017-6916-x.
  • Yan, J., L. Xu, and J. Yang. 2008. A study on the thermal decomposition of coal-derived pyrite. Journal of Analytical and Applied Pyrolysis 82:229–34. doi:10.1016/j.jaap.2008.03.013.
  • Yang, Y., Z. Li, and L. Si. 2017. Study governing the impact of long-term water immersion on coal spontaneous ignition. Arabian Journal for Science and Engineering 42 (4):1359–69. doi:10.1007/s13369-016-2245-9.
  • Zhang, L. 2016. The study of influence on coal spontaneous combustion characteristics by organic sulfide. Xuzhou: China University of Mining and Technology. in Chinese.
  • Zhang, W., S. Jiang, K. Wang, L. Wang, Y. Xu, Z. Wu, H. Shao, Y. Wang, and M. Miao. 2014. Thermogravimetric dynamics and FTIR analysis on oxidation properties of low-rank coal at low and moderate temperatures. International Journal of Coal Preparation and Utilization 35 (1):39–50. doi:10.1080/19392699.2013.873421.
  • Zhou, Y., P. Xu, and H. Cheng. 2018. Thermal phase transition of pyrite from coal. Journal of Thermal Analysis and Calorimetry 134:2391–96. doi:10.1007/s10973-018-7634-8.
  • Zhu, J., H. Xian, X. Lin, H. Tang, R. Du, Y. Yang, R. Zhu, X. Liang, J. Wei, H. Teng, et al. 2018. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution. Geochimica et cosmochimica acta 228:259–74. doi:10.1016/j.gca.2018.02.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.