1,971
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Nondestructive quantification of moisture in powdered low-rank coal by a unilateral nuclear magnetic resonance scanner

ORCID Icon, &
Pages 1421-1434 | Received 01 Aug 2019, Accepted 24 Jan 2020, Published online: 31 Jan 2020

References

  • Anferova, S., V. Anferov, D. G. Rata, B. Blümich, J. Arnold, C. Clauser, P. Blümer, and H. Raich. 2004. A mobile NMR device for measurements of porosity and pore size distributions of drilled core samples. Concepts in Magnetic Resonance Part B 23:26–32. doi:10.1002/cmr.b.20020.
  • Arima, K., Y. Tsuchiyama, T. Sawatsubashi, M. Kinoshita, and H. Ishii. 2018. Drying of wet brown coal particles by a steam-fluidized bed dryer. Drying Technology 36:664–72. doi:10.1080/07373937.2017.1323337.
  • Blümich, B., J. Perlo, and F. Casanova. 2008. Mobile single-sided NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 52:197–269. doi:10.1016/j.pnmrs.2007.10.002.
  • Chang, W. H., J. H. Chen, and L. P. Hwang. 2006. Single-sided mobile NMR with a Halbach magnet. Magnetic Resonance Imaging 24:1095–102. doi:10.1016/j.mri.2006.04.005.
  • Chen, Z., W. Wu, and P. K. Agarwal. 2000. Steam-drying of coal. Part 1. Modeling the behavior of a single particle. Fuel 79:961–74. doi:10.1016/S0016-2361(99)00217-3.
  • Fukushima, E., and S. B. W. Roeder. 1979. Spurious ringing in pulse NMR. Journal of Magnetic Resonance 33:199–203.
  • Graebert, R., and D. Michel. 1990. Determination of water in coals by means of proton spin relaxation measurements. Fuel 69:826–29. doi:10.1016/0016-2361(90)90225-F.
  • Greer, M., C. Chen, and S. Mandal. 2018. Automated classification of food products using 2D low-field NMR. Journal of Magnetic Resonance 294:44–58. doi:10.1016/j.jmr.2018.06.011.
  • He, Q., H. Yeasmin, A. Hoadley, and Y. Qi. 2019. Physical and chemical changes in lignite during mechanical and thermal dewatering process and associated changes in the organic compounds in the wastewater. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2019.1682563.
  • Hürlimann, M. D., and D. D. Griffin. 2000. Spin dynamics of Carr-Purcell-Meiboom-Gill-like sequences in grossly inhomogeneous B0 and B1 fields and application to NMR well logging. Journal of Magnetic Resonance 143:120–35. doi:10.1006/jmre.1999.1967.
  • Kim, H. S., Y. Matsushita, M. Oomori, T. Harada, J. Miyawaki, S. H. Yoon, and I. Mochida. 2013. Fluidized bed drying of Loy Yang brown coal with variation of temperature, relative humidity, fluidization velocity and formulation of its drying rate. Fuel 105:415–24. doi:10.1016/j.fuel.2012.09.057.
  • Liu, Z., D. Liu, Y. Cai, Y. Yao, Z. Pan, and Y. Zhou. 2020. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review. International Journal of Coal Geology 218:103261. doi:10.1016/j.coal.2019.103261.
  • Luo, L. V., B. Zhang, and C. Chen. 2017. Drying and moisture readsorption characteristics of lignite. International Journal of Coal Preparation and Utilization 1–18.
  • Lynch, L. J., and D. S. Webster. 1979. An nmr study of the water associated with brown coal. Fuel 58:429–32. doi:10.1016/0016-2361(79)90083-8.
  • Lynch, L. J., and D. S. Webster. 1980. Proton spin-lattice relaxation of water associated with brown coal. Journal of Magnetic Resonance 40:259–72.
  • Lynch, L. J., W. A. Barton, and D. S. Webster, 1991. Determination and nature of water in low rank coals. Proceedings of the 16th Biennial Low-Rank Fuels Symposium, Billings, Montana, USA, p.187–98.
  • Marble, A. E., I. V. Mastikhin, B. G. Colpitts, and B. J. Balcom. 2007. A compact permanent magnet array with a remote homogeneous field. Journal of Magnetic Resonance 186:100–04. doi:10.1016/j.jmr.2007.01.020.
  • Nakashima, Y. 2001. Pulsed field gradient proton NMR study of the self-diffusion of H2O in montmorillonite gel: Effects of temperature and water fraction. American Mineralogist 86:132–38. doi:10.2138/am-2001-0114.
  • Nakashima, Y. 2015. Development of a single-sided nuclear magnetic resonance scanner for the in vivo quantification of live cattle marbling. Applied Magnetic Resonance 46:593–606. doi:10.1007/s00723-015-0657-4.
  • Nakashima, Y. 2019. Non-destructive quantification of lipid and water in fresh tuna meat by a single-sided nuclear magnetic resonance scanner. Journal of Aquatic Food Product Technology 28:241–52. doi:10.1080/10498850.2019.1569742.
  • Nicholls, C. I., and A. De Los Santos. 1991. Hydrogen transient nuclear magnetic resonance for industrial moisture sensing. Drying Technology 9:849–73. doi:10.1080/07373939108916724.
  • Norinaga, K., H. Kumagai, J. I. Hayashi, and T. Chiba. 1998a. Classification of water sorbed in coal on the basis of congelation characteristics. Energy & Fuels 12:574–79. doi:10.1021/ef970183j.
  • Norinaga, K., H. Kumagai, J. I. Hayashi, and T. Chiba. 1998b. Evaluation of drying induced changes in the molecular mobility of coal by means of pulsed proton NMR. Energy & Fuels 12:1013–19. doi:10.1021/ef980087y.
  • Phiciato, P., and D. Yaskuri. 2019. Dual-stage drying process of lignite using pilot scale coal rotary dryer. International Journal of Coal Preparation and Utilization 373–88.
  • Potter, O. E., and A. J. Keogh. 1981. Drying high-moisture coals before liquefaction or gasification. Fuel Processing Technology 4:217–27. doi:10.1016/0378-3820(81)90015-1.
  • Prado, P. J. 2001. NMR hand-held moisture sensor. Magnetic Resonance Imaging 19:505–08. doi:10.1016/S0730-725X(01)00279-X.
  • Pusat, S., M. T. Akkoyunlu, and H. H. Erdem. 2018. Fragmentation of a Turkish low rank coal during fixed-bed evaporative drying process. International Journal of Coal Preparation and Utilization 1–9. doi:10.1080/19392699.2018.1451847.
  • Rahman, M., V. Kurian, D. Pudasainee, and R. Gupta. 2017. A comparative study on lignite coal drying by different methods. International Journal of Coal Preparation and Utilization 1–17. doi:10.1080/19392699.2017.1341881.
  • Räntzsch, V., M. Wilhelm, and G. Guthausen. 2016. Hyphenated low-field NMR techniques: Combining NMR with NIR, GPC/SEC and rheometry. Magnetic Resonance in Chemistry 54:494–501. doi:10.1002/mrc.v54.6.
  • Tahmasebi, A., H. Zheng, and J. Yu. 2016. The influences of moisture on particle ignition behavior of Chinese and Indonesian lignite coals in hot air flow. Fuel Processing Technology 153:149–55. doi:10.1016/j.fuproc.2016.07.017.
  • Todt, H., G. Guthausen, W. Burk, D. Schmalbein, and A. Kamlowski. 2006. Water/moisture and fat analysis by time-domain NMR. Food Chemistry 96:436–40. doi:10.1016/j.foodchem.2005.04.032.
  • Unsworth, J. F., C. S. Fowler, N. A. Heard, V. L. Weldon, and V. J. McBrierty. 1988. Moisture in coal: 1. Differentiation between forms of moisture by NMR and microwave attenuation techniques. Fuel 67:1111–19. doi:10.1016/0016-2361(88)90379-1.
  • Xu, C., G. Xu, Y. Fang, L. Zhou, Y. Yang, and D. Zhang. 2014. A novel lignite pre-drying system incorporating a supplementary steam cycle integrated with a lignite fired supercritical power plant. Energy Procedia 61:1360–63. doi:10.1016/j.egypro.2014.12.127.
  • Xu, F., X. Jin, L. Zhang, and X. D. Chen. 2017. Investigation on water status and distribution in broccoli and the effects of drying on water status using NMR and MRI methods. Food Research International 96:191–97. doi:10.1016/j.foodres.2017.03.041.
  • Yao, Y., D. Liu, Y. Che, D. Tang, S. Tang, and W. Huang. 2010. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 89:1371–80. doi:10.1016/j.fuel.2009.11.005.
  • Yu, J., A. Tahmasebi, Y. Han, F. Yin, and X. Li. 2013. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Processing Technology 106:9–20. doi:10.1016/j.fuproc.2012.09.051.