142
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Experimental Study on the Influence of Pyrite Oxidation Products on Coal Spontaneous Combustion

, , , &
Pages 2581-2596 | Received 16 Sep 2020, Accepted 10 Dec 2020, Published online: 27 Dec 2020

References

  • Banerjee, S. C., and R. N. Chakravorty. 1967. Use of DTA in the study of spontaneous combustion of coal. Journal of Mines Metals & Fuels 15 (1):1–5.
  • Butakova, V. I., V. K. Popov, Y. M. Posokhov, and N. P. Kuznetsova. 2013. Initial stage in the low-temperature oxidation of coal in air. Coke and Chemistry 56 (7):225–34. doi:10.3103/s1068364x13070028.
  • Cai, J., S. Yang, X. Hu, W. Song, Q. Xu, B. Zhou, and Y. Song. 2019. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation. Fuel 253:339–48. doi:10.1016/j.fuel.2019.05.040.
  • Chen, S. H., X. F. Bai, and Q. G. Fang. 2018. Research on the mechanism of pyrite promoting low-temperature oxidation of coal. Clean Coal Technology 24 (6):14–19. CNKI: SUN: JJMS.0.2018-06-003 (in Chinese).
  • Cheng, G. Y., S. Feng, Z. L. Niu, and Y. F. Zhou. 2016. Analysis on spontaneous combustion of the jurassic coal based on low-temperature oxidation. Journal of North China Institute of Ence and Technology. doi:10.2991/icmse-16.2016.26.
  • Fan, N., J. R. Wang, C. B. Deng, Y. P. Fan, Y. L. Mu, and T. T. Wang. 2020. Numerical study on enhancing coalbed methane recovery by injecting N2/CO2 mixtures and its geological significance. Energy Science & Engineering 8:1104–19. doi:10.1002/ese3.571.
  • Li, L., D. Y. Jiang, and B. B. Beamish. 2010. Calculation of coal spontaneous combustion period based on activation energy of adiabatic experiment. Acta China Coal Society 35 (5):802–05. in Chinese.
  • Liu, P. S. 2018. Analysis of low-temperature oxidation process of spontaneously combustible coal based on free radical reaction. Coal Mine Safety 49 (7):164–166,170. in Chinese. doi:10.13347/j.cnki.mkaq.2018.07.043.
  • Lu, B., J. R. Wang, L. Qiao, and J. Q. Chen. 2020. Effect of electrochemical oxidation of pyrite on coal spontaneous combustion. International Journal of Coal Preparation and Utilization 1-12. doi:10.1080/19392699.2020.1768079.
  • Miller, K. W., and J. B. Risatti. 1988. Microbial oxidation of pyrrhotites in coal chars. Fuel 67 (8):1150–54. doi:10.1016/0016-2361(88)90386-9.
  • Pietrzak, R., T. Grzybek, and H. Wachowska. 2007. XPS study of pyrite-free coals subjected to different oxidizing agents. Fuel 86 (16):2616–24. doi:10.1016/j.fuel.2007.02.025.
  • Plot, R., J. Burman, and E. Lhuyd. 1705. The natural history of Oxford-shire. Buckinghamshire, UK: Minet.
  • Qiao, L., C. B. Deng, X. Zhang, X. F. Wang, and F. W. Dai. 2018. The effect of water immersion on coal oxidation activation energy and thermal effect. Journal of China Coal Society 43 (9):2518–24. CNKI: SUN: MTXB.0.2018-09-019 (in Chinese).
  • Qiu, Y. H. 1985. Narrow Sense of Redox Electric Field——Research on the Natural Polarization Mechanism of Carbon-bearing Geological Bodies. Geology and Prospecting 1985(8):45–51. CNKI: SUN: DZKT.0.1985-08-007 (in Chinese).
  • Ren, T. X., J. S. Edwards, and D. Clarke. 1999. Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion. Fuel 78 (14):1611–20. doi:10.1016/S0016-2361(99)00107-6.
  • Shi, T., J. Deng, X. F. Wang, and Z. Y. Wen. 2004. Study on the reaction mechanism of coal spontaneous combustion in the early stage. Chinese Journal of Fuel Chemistry and Technology (6):652–57. doi:10.3969/j.0253-2409.2004.06.003. ( in Chinese).
  • Silverman, M. P. 1967. Mechanism of bacterial pyrite oxidation. Journal of Bacteriology 94 (4):1046–51. doi:10.1128/JB.94.4.1046-1051.1967.
  • Song, X. Y., and Y. Wen. 1989. Study on the spontaneous combustion mechanism of sulfide rock. Metallic Materials and Metallurgical Engineering 1989(4):1–7. ( in Chinese).
  • Sun, H., F. Q. Yang, C. Wu, Z. J. Li, and Y. P. Lu. 2009. Research progress on spontaneous combustion mechanism and prevention technology of sulfide ore. Metal Mine (12):5–10. doi:10.3321/j.1001-1250.2009.12.002. in Chinese.
  • Tan, B., H. Niu, C. He, and S. Feng. 2013. Goaf coal spontaneous combustion temperature field theory and numerical analysis under mining conditions. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Ence and Technology) 44 (1):381–87. doi:10.1073/pnas.1834479100.
  • Tan, B., B. Xu, M. M. Hu, X. B. Yang, K. L. Chen, and C. Xu. 2019. Quantitative Infrared Spectroscopic Analysis of Surface Functional Groups of Coals with Different Degrees of Metamorphism During Oxidation. Journal of Central South University (Natural Science Edition) 050 (11):2886–95. in Chinese.
  • Teng, F. Y., W. Y. Liu, J. Deng, and D. Wang. 2014. Study on the influence of spontaneous combustion characteristics of coal samples with sulfur content. Shaanxi Coal 33 (6):1–3. in Chinese. doi:10.3969/j.1671-749X.2014.06.001.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 1999. Theoretical analysis of reaction regimes in low-temperature oxidation of coal. Fuel 78 (9):1073–81. doi:10.1016/S0016-2361(99)00016-2.
  • Wang, J. R. 2007. Quantum Chemistry Theory of Coal Spontaneous Combustion. Beijing, China: Science Press. in Chinese.
  • Wang, J. R., and C. B. Deng. 2007. The theory of spontaneous combustion of coal microstructure and the difference in component quantity and quality. Journal of China Coal Society (12):1291–96. doi:10.3321/j.0253-9993.2007.12.012. (in Chinese).
  • Wang, X. Y., X. Zhang, and C. Y. Hao. 2017. Research on coal spontaneous combustion prediction model based on adiabatic oxidation test results. Chinese Journal of Safety Science (6):71–76. doi:10.16265/j.cnki.1003-3033.2017.06.012. ( in Chinese).
  • Wen, H., F. Y. Zhang, Y. F. Jin, and W. Y. Liu. 2011. Experimental study on the influence of sulfur on coal spontaneous combustion characteristic parameters. Coal Mine Safety 42 (10):5–7. CNKI: SUN: MKAQ.0.2011-10-001 (in Chinese).
  • Xiao, Y., L. Ma, Z. P. Wang, J. Deng, W. Wang, and X. Xiang. 2007. Using thermogravimetric analysis to study the characteristic temperature of coal spontaneous combustion. Coal Science and Technology 35 (5):78–81. doi:10.3969/j.0253-2336.2007.05.022. ( in Chinese).
  • Xu, J. C. 2001. The theory of judging the dangerous area of coal spontaneous combustion. Beijing, China: Coal Industry Press. ( in Chinese).
  • Zhang, H. J., D. M. Wang, X. Y. Qi, and W. Si. 2012. Study on low-temperature oxidation characteristics of high-sulfur coal under dry conditions. Chinese Journal of Safety Science 22 (4):127. doi:10.3969/j.1003-3033.2012.04.022. ( in Chinese).
  • Zhang, Y. H., Y. K. Lai, Z. A. Huang, and Y. K. Gao. 2011. Study on small simulation device of coal spontaneous combustion process. Procedia Engineering 26:922–27. doi:10.1016/j.proeng.2011.11.2257.
  • Zhou, X. H., C. Y. Li, A. Li, M. H. He, D. Pang, and D. P. Song. 2014. Optimization of coal spontaneous combustion inhibitors based on changes in ignition activation energy. Chinese Journal of Safety Science 24 (6):20–25. ( in Chinese).
  • Zhu, H. Q., H. Y. Wang, Z. Y. Song, and C. N. He. 2014. The relationship between coal adiabatic oxidation kinetic parameters and the degree of deterioration. Journal of China Coal Society (3):498–503. doi:10.13225/j.cnki.jccs.2013.0409. ( in Chinese).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.