109
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Study on the effect of chemical inhibitors on CO2 adsorption in coal

, , , &
Pages 2675-2684 | Received 17 Aug 2020, Accepted 04 Jan 2021, Published online: 16 Jan 2021

References

  • Azdarpour, A., M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin, M. A. Karaei. 2015. A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal 279:615–30. doi:10.1016/j.cej.2015.05.064.
  • Bhatia, S. K. 1987. Modeling the pore structure of coal. Aiche Journal 33 (10):1707–18. doi:10.1002/aic.690331014.
  • Detheridge, A., L. J. Hosking, H. R. Thomas, V. Sarhosis, D. Gwynn-Jones, J. Scullion. 2019. Deep seam and minesoil carbon sequestration potential of the South Wales Coalfield, UK. Journal of Environmental Management 248:248. doi:10.1016/j.jenvman.2019.109325.
  • Gao, F., C. B. Deng, X. F. Wang, X.-M. Li, F.-W. Dai. 2018. Experimental study on adsorbing of flue gas and its application in preventing spontaneous combustion of coal. Adsorption Science & Technology. 36(9–10):1744–54. doi:10.1177/0263617418807113.
  • Hui, D., Y. Pan, P. Luo, Y. Zhang, L. Sun, C. Lin. 2019. Effect of supercritical CO2 exposure on the high-pressure CO2 adsorption performance of shales. Fuel 247:57–66. doi:10.1016/j.fuel.2019.03.013.
  • Jia, B. S., B. Yin, Y. G. Yan. 2014. Research on technology of applying the flue gas of pithead power plant to fire prevention and extinguishing in goaf. Journal of Safety Science and Technology 10 (7):49–54.
  • Kweon, H., and M. Deo. 2017. The impact of reactive surface area on brine-rock-carbon dioxide reactions in CO2 sequestration. Fuel 188:39–49. doi:10.1016/j.fuel.2016.10.010.
  • Li, S. G., Bai, Y., Lin, H. F., et al. 2018. Molecular simulation of adsorption thermodynamics of multicomponent gas in coal. Journal of China Coal Society 43 (9):114–21.
  • Meng, M., Z. Qiu, R. Zhong, Z. Liu, Y. Liu, P. Chen. 2019. Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach. Chemical Engineering Journal 368:847–64. doi:10.1016/j.cej.2019.03.008.
  • Pan, Z., and L. D. Connell. 2007. A theoretical model for gas adsorption-induced coal swelling. International Journal of Coal Geology 69 (4):243–52. doi:10.1016/j.coal.2006.04.006.
  • Ping, G. 2020. A theoretical model for coal swelling induced by gas adsorption in the full pressure range. Adsorption Science & Technology 38:94–112. doi:10.1177/0263617420907730.
  • Rodrigues, C. F. A., M. A. P. Dinis, and M. J. L. de Sousa. 2015. Review of European energy policies regarding the recent “carbon capture, utilization and storage” technologies scenario and the role of coal seams. Environmental Earth Sciences 74 (3):2553–61. doi:10.1016/0016-2361(92)90101-S.
  • Singh, A. K., N. Sahay, and I. Ahmad. 2002. Role of inorganic compounds as inhibitor in diminishing self-heating phenomena of Indian coal. Journal of Mines, Metals & Fuels 50 (9):356–59.
  • Slovák, V., and B. Taraba. 2012. Urea and CaCl2 as inhibitors of coal low-temperature oxidation. Journal of Thermal Analysis and Calorimetry 110 (1):363–67. doi:10.1007/s10973-012-2482-4.
  • Sobolik, J. L., and D. K. Ludlow. 1992. Parametric sensitivity comparison of the BET and Dubinin-Radushkevich models for determining char surface area by CO2 adsorption. Fuel 71 (10):1195–202. doi:10.1016/0016-2361(92)90101-S.
  • Song, L. L., Feng, L., Liu, J. T., et al. 2012. Effect of alkali treatment on the pore structure of lignite. Journal of China University of Mining &technology 41 (4):629–34.
  • Strydom, C. A., Q. P. Campbell, M. le Roux, S. M. Du Preez. 2016. Validation of using a modified BET model to predict the moisture adsorption behavior of bituminous coal. International Journal of Coal Preparation and Utilization. 36(1):28–43. doi:10.1080/19392699.2015.1049264.
  • Taraba, B., R. Peter, and S. Václav. 2011. Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Processing Technology 92 (3):712–15. doi:10.1016/j.fuproc.2010.12.003.
  • Tian, W. B., A. F. Li, and W. C. Han. 2017. Effect of water content on adsorption/desorption of coalbed methane. Journal of China Coal Society 42 (12):3196–202.
  • Wen, H., G. Wei, L. Ma, Z. Li, C. Lei, J. Hao. 2019. Damage characteristics of coal microstructure with liquid CO2 freezing-thawing. Fuel 249:169–77. doi:10.1016/j.fuel.2019.03.110.
  • Yan, M., Bai, Y., Li, S. G., et al. 2019. Factors influencing the gas adsorption thermodynamic characteristics of low-rank coal. Fuel 248:117–26. doi:10.1016/j.fuel.2019.03.064.
  • Yang, Y. X., Kang, J. H., Li, G. H., et al. 2018. Experimental study on thermal effect characteristics of methane adsorption for coal samples pretreated by carbon dioxide and water. Journal of Safety Science and Technology 14 (8):63–69.
  • Zhai, S. L. 2018. Study on adsorption of CH4 gas by volatiles and ash. Shanxi Chemical Industry 38 (6):137–39.
  • Zhang, J., Zhang, D. F., Huo, P. L., et al. 2017. Functional groups on coal matrix surface dependences of carbon dioxide and methane adsorption. Chemical Industry and Engineering Progress 36 (6):1977–88.
  • Zhao, L., Q. Wang, and X. H. Ma. 2019. Solubility variation of coal during swelling processes. Journal of Chemical Engineering of Chinese Universities 33 (2):283–89.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.