249
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Low-temperature oxidation and self-heating accelerated spontaneous combustion properties of a Yima formation bituminous coal with various moisture contents

, , ORCID Icon, , &
Pages 2722-2741 | Received 01 Nov 2020, Accepted 01 Feb 2021, Published online: 28 Feb 2021

References

  • Akgün, F., and A. Arisoy. 1994. Effect of particle size on the spontaneous heating of a coal stockpile. Combustion and Flame 99(1): 137–146. doi: 10.1016/0010-2180(94)90085-X.
  • Arisoy, A., and F. Akgün. 1994. Modelling of spontaneous combustion of coal with moisture content included. Fuel 73(2): 281–286. doi: 10.1016/0016-2361(94)90126-0.
  • Avila, C., T. Wu, and E. Lester. 2014. Estimating the spontaneous combustion potential of coals using thermogravimetric analysis. Energy Fuel 28(3): 1765–1773. doi: 10.1021/ef402119f.
  • Bhat, S., and P. K. Agarwal. 1996. The effect of moisture condensation on the spontaneous combustibility of coal. Fuel 75(3): 1523–1532. doi: 10.1016/0016-2361(96)00121-4.
  • Bhattacharyya, K. K. 1972. The role of desorption of moisture from coal in its spontaneous heating. Fuel 51(3): 214–220. doi: 10.1016/0016-2361(72)90084-1.
  • Chatterjee, R. S. 2005. Coal fire mapping from satellite thermal IR data-A case example in Jharia Coalfield, Jharkhand, India. ISPRS Journal of Photogrammetry and Remote Sensing 60: 113–128. doi: 10.1016/j.isprsjprs.2005.12.002.
  • Chen, X. D., and J. B. Stot. 1993. The effect of moisture content on the oxidation rate of coal during near-equilibrium drying and wetting at 50. Fuel 72(6): 787–792. doi: 10.1016/0016-2361(93)90081-C.
  • Clemens, A. H., and T. W. Matheson. 1996. The role of moisture in the self-heating of low-coals. Fuel 75(7): 891–895. doi: 10.1016/0016-2361(96)00010-5.
  • Cudmore, J. F. 1988. Spontaneous combustion of coal and mine fires: By S.C. International Journal of Coal Geology 9(4): 397–398. . Banerjee, (Editor); A.A. Balkema, Rotterdam. The Netherlands, 1985, xii + 168 pp., Dfl. 68,25 (hardback). doi: 10.1016/0166-5162(88)90034-1.
  • Deng, J., Q. W. Li, Y. Xiao, and H. Wen. 2017. The effect of oxygen concentration on the non-isothermal combustion of coal. Thermochimica Acta 653: 106–115. doi: 10.1016/j.tca.2017.04.009.
  • GB/T 17608–2006, 2006. Division of variety and grading for coal products. China national standards, Beijing, P.R. China.
  • GB/T 212–2008, 2008. Proximate analysis of coal. China National Standards, Beijing, P. R. China.
  • GB/T 474–2008, 2008. Method for preparation of coal sample. ISO 18283, 2006. Hard Coal and Coke-Manual Sampling. MOD, Beijing, P. R. China.
  • Guney, M. 1971. An adiabatic study of the influence of moisture on the spontaneous heating of coal. CIM Bulletin 64(707): 138.
  • Gürdal, G., H. Hoşgörmez, Ö. Özcan, X. Li, H. D. Liu, and W. J. Song. 2015. The properties of çan basin coals (Çanakkale-Turkey): Spontaneous combustion and combustion by-products. International Journal of Coal Geology 138: 1–15. doi: 10.1016/j.coal.2014.12.004.
  • Hu, Y., L. Song, F. You, and M. H. Zhong. 2006. An Introduction to Fire Chemistry. Beijing: Chemical Industry Press. (in Chinese)
  • Jones, J. C., P. S. Chiz, R. Koh, and J. Matthew. 1996. Kinetics parameters of oxidation of bituminous coals from heat release rate measurements. Fuel 75(18): 1755–1758. doi: 10.1016/S0016-2361(96)00159-7.
  • Jones, J. C., K. P. Henderson, and J. Littlefair. 1997. Kinetics parameters of oxidation of coals by heat release measurement and their relevance to self- heating tests. Fuel 77(2): 19–22. doi: 10.1016/S0016-2361(97)00155-5.
  • Jones, R. E., and D. T. A. 1945. Townend. Mechanism of the oxidation of coal. Nature 155: 424–425. doi: 10.1038/155424b0.
  • Krevelen van, D. W. 1993. Coal: typology-physics-chemistry-constitution. 3rd ed. New York: Elsevier.
  • Lei, C. K., J. Deng, K. Cao, Y. Xiao, L. Ma, W. F. Wang, T. Ma, and C. M. Shu. 2019. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob. Fuel 239: 297–311. doi: 10.1016/j.fuel.2018.11.006.
  • Li, B., G. Chen, H. Zhang, and C. D. Sheng. 2014. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel 118: 385–391. doi: 10.1016/j.fuel.2013.11.011.
  • Li, Q. W., Y. Xiao, C. P. Wang, J. Deng, and C. M. Shu. 2019. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel 250: 235–244. doi: 10.1016/j.fuel.2019.04.003.
  • Liang, X. Y., and D. M. Wang. 2003. Effects of moisture on spontaneous combustion of coal. Journal of Liaoning Technical University 22(4): 472–474. (in Chinese)
  • Ma, D., B. T. Qin, S. Song, H. J. Liang, and A. Gao. 2017. An experimental study on the effects of air humidity on the spontaneous combustion characteristics of coal. Combustion Science and Technology 189(12): 2209–2219. doi: 10.1080/00102202.2017.1368500.
  • Maffei, T. 2013. Kinetic model of coal combustion. PhD diss., Polytechnic University of Milan.
  • Nordon, P., B. C. Young, and N. W. Bainbridge. 1979. The rate of oxidation of char and coal in relation to their tendency to self-heat. Fuel 58(6): 443–449. doi: 10.1016/0016-2361(79)90086-3.
  • Onifade, M., and B. Genc. 2018. Spontaneous combustion of coals and coal-shales. International Journal of Mining Science and Technology 28(6): 933–40. doi: 10.1016/j.ijmst.2018.05.013.
  • Pan, R. K., D. Hu, J. K. Chao, L. Wang, J. W. Ma, and H. L. Jia. 2020a. The heat of wetting and its effect on coal spontaneous combustion. Thermochimica Acta 691: 178–711. doi: 10.1016/j.tca.2020.178711.
  • Pan, R. K., T. Qiu, J. K. Chao, H. Y. Ma, J. Wang, and C. Li. 2020b. Thermal evolution of the oxidation characteristics of pulverized coal with different particle sizes and heating rates. Thermochimica Acta 685: 178–516. doi: 10.1016/j.tca.2020.178516.
  • Perdochova, M., K. Derychova, H. Veznikova, A. Bernatik, and M. Pitt. 2015. The influence of oxygen concentration on the composition of gaseous products occurring during the self-heating of coal and wood sawdust. Process Safety and Environmental 94: 463–470. doi: 10.1016/j.psep.2014.10.006.
  • Pone, J. D. N., K. A. A. Hein, G. B. Stracher, H. J. Annegarn, R. B. Finkleman, D. R. Blake, J. K. McCormack, and P. Schroeder. 2007. The spontaneous combustion of coal and its by-products in the witbank and sasolburg coalfields of South Africa. International Journal of Coal Geology 72: 124–140. doi: 10.1016/j.coal.2007.01.001.
  • Ren, L. F., J. Deng, Q. W. Li, L. Ma, L. Zou, B. L. Wang, and C. M. Shu. 2019. Low-temperature exothermic oxidation characteristics and spontaneous combustion risk of pulverised coal. Fuel 252: 238–245. doi: 10.1016/j.fuel.2019.04.108.
  • Schmal, D., J. H. Duyzer, and J. W. van Heuven. 1985. A model for the spontaneous heating of stored coal. Fuel 64(7): 963–972. doi: 10.1016/0016-2361(85)90152-8
  • Shao, Y. 2015. Spontaneous combustion characteristics and its influence factors of coal. Master diss., Nanjing Tech University. (in Chinese)
  • Shen, J. 2006. Mine geological report of Gengcun coalfield. Henan Polytechnic University, Jiaozuo, China.
  • Slyusarskiy, K. V., K. B. Larionov, V. I. Osipov, S. A. Yankovsky, V. E. Gubin, and A. A. Gromov. 2017. Non-isothermal kinetic study of bituminous coal and lignite conversion in air and in argon/air mixtures. Fuel 191: 383–392. doi: 10.1016/j.fuel.2016.11.087.
  • Song, S., B. T. Qin, H. H. Xin, X. W. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 234: 732–737. doi: 10.1016/j.fuel.2018.07.074.
  • Song, Z. Y., X. Y. Huang, M. G. Luo, J. H. Gong, and X. H. Pan. 2017. Experimental study on the diffusion-kinetics interaction in heterogeneous reaction of coal. Journal of Thermal Analysis and Calorimetry 129(3): 1625–1637. doi: 10.1007/s10973-017-6386-1.
  • Song, Z. Y., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. International Journal of Coal Geology 133: 72–99. doi: 10.1016/j.coal.2014.09.004.
  • Stot, J. B., and X. D. Chen. 1992. Measuring the tendency of coal to fire spontaneously. International Journal of Rock Mechanics and Mining Sciences 32(3): 11–18. doi: 10.1016/0148-9062(92)91720-P.
  • Wang, D. M. 2012. The coal oxidation dynamics: theory and application. Beijing: Science Press. (in Chinese)
  • Wang, D. M., X. Y. Qi, X. X. Zhong, and J. J. Gu. 2009. Test method for the propensity of coal to spontaneous combustion. Procedia Earth and Planetary Science 1(1): 20–26. doi: 10.1016/j.proeps.2009.09.006.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Analysis of the mechanism of the low-temperature oxidation of coal. Combustion and Flame 134(1–2): 107–117. doi: 10.1016/S0010-2180(03)00086-5.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003a. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion 29(9): 487–513. doi: 10.1016/S0360-1285(03)00042-X.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003b. Role of inherent water in low-temperature oxidation of coal. Combustion Science and Technology 175(2): 253–270. doi: 10.1080/00102200302406.
  • Wang, W. D. 2017. Study on the effect of characteristic factors on coal pyrolysis and spontaneous combustion characteristic. Master diss., Nanjing Tech University. (in Chinese)
  • Wang, X. Y., Y. Luo, and B. Vieira. 2018. Experimental technique and modeling for evaluating heat of rewetting effect on coals’ propensity of spontaneous combustion based on adiabatic oxidation method. International Journal of Coal Geology 187: 1–10. doi: 10.1016/j.coal.2018.01.002.
  • Xing, W., M. Yin, Q. Lv, Y. Hu, C. P. Liu, and J. J. Zhang. 2014. 1-oxygen solubility, diffusion coefficient, and solution viscosity. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts 1–31. doi: 10.1016/B978-0-444-63278-4.00001-X.
  • Xu, Y. L., L. Y. Wang, N. Tian, J. P. Zhang, M. G. Yu, and A. D. Michael. 2017. Spontaneous combustion coal parameters for the crossing-point temperature (CPT) method in a temperature-programmed system (TPS). Fire Safety Journal 91: 147–154. doi: 10.1016/j.firesaf.2017.03.084.
  • Yan, M., Y. Bai, S. G. Li, H. F. Lin, D. J. Yan, and C. M. Shu. 2019. Factors influencing the gas adsorption thermodynamic characteristics of low-rank coal. Fuel 248: 117–126. doi: 10.1016/j.fuel.2019.03.064.
  • Yu, J. L., A. Tahmasebi, Y. N. Han, F. K. Yin, and X. C. Li. 2013. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Processing Technology 106: 9–20. doi: 10.1016/j.fuproc.2012.09.051.
  • Zhang, Y. Y., Y. X. Guo, F. Q. Cheng, K. Z. Yan, and Y. Cao. 2015. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochimica Acta 614: 148–173. doi: 10.1016/j.tca.2015.06.018.
  • Zubicek, V., and A. Adamus. 2013. Susceptibility of coal to spontaneous combustion verified by modified adiabatic method under conditions of ostrava-karvina coalfield, Czech Republic. Fuel Processing Technology 113: 63–66. doi: 10.1016/j.fuproc.2013.03.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.