245
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of mixing ratio on the adsorption behavior of low-rank coal surface using mixed collectors: Experimental and molecular dynamics simulation study

, , , &
Pages 2788-2803 | Received 21 Feb 2020, Accepted 08 Jul 2020, Published online: 26 Mar 2021

References

  • Arif, M., F. Jones, A. Barifcani, and S. Iglauer. 2017. Influence of surface chemistry on interfacial properties of low to high rank coal seams. Fuel 194:211–21. doi:10.1016/j.fuel.2017.01.027.
  • Crawford, R. J., and D. E. Mainwaring. 2001. The influence of surfactant adsorption on the surface characterisation of Australian coals. Fuel 80:313–20. 1 0.1 016/S0016-2361(00)00110-1.
  • Dey, S. 2012. Enhancement in hydrophobicity of low rank coal by surfactants - A critical overview, Fuel Process. Technol 94:151–58. doi:10.1016/j.fuproc.2011.10.021.
  • Dong, L., E. Zhou, L. Peng, C. Duan, Y. Zhao, Z. Luo, and Q. Liu. 2017. Analysis of interaction between bubbles and particles in a dense gas-vibro fluidized bed. Chemical Engineering Science 161:265–73. doi:10.1016/j.ces.2016.12.063.
  • Gui, X., Y. Xing, T. Wang, Y. Cao, Z. Miao, and M. Xu. 2017. Intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid. Powder Technology 305:109–16. doi:10.1016/j.powtec.2016.09.058.
  • Hatcher PG. 1990. Chemical structural models for coalified wood (vitrinite) in low rank coal. Organic Geochemistry16(4): 959–968. doi:10.3906/kim-0901-36
  • He, J., C. Liu, and Y. Yao. 2018. Flotation intensification of the coal slime using a new compound collector and the interaction mechanism between the reagent and coal surface. Powder Technology 325:333–39. doi:10.1016/j.powtec.2017.11.034.
  • Ji, D. G., S. Q. Peng, Y. Wu, and Y. H. Cai. 2012. Study of flotation effect of ST-1 complex reagent. Advanced Materials Research 610–613:3357–61. d oi:1 0.4 028/w ww.scientific.net/AMR.610-613.3357.
  • Jia, R., G. H. Harris, and D. W. Fuerstenau. 2000. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. International Journal of Mineral Processing 58 (1–4):99–118. doi:10.1016/S0301-7516(99)00024-1.
  • Jia, R., G. H. Harris, and D. W. Fuerstenau. 2002. Chemical reagents for enhanced coal flotation. Coal Preparation 22 (3):123–49. doi:10.1080/07349340213847.
  • Li, B., S. Liu, J. Guo, L. Zhang, and X. Sun. 2019. Increase in wettability difference between organic and mineral matter to promote low-rank coal flotation by using ultrasonic treatment. Applied Surface Science 481:454–59. doi:10.1016/j.apsusc.2019.03.142.
  • Liu, Y. J., C. Y. Hu, and S. L. Lo. 2019. Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. Journal of Hazardous Materials 366:592–605. doi:10.1016/j.jhazmat.2018.12.037.
  • Liu, Z., Y. Liao, M. An, Q. Lai, L. Ma, and Y. Qiu. 2018. Enhancing low-rank coal flotation using a mixture of dodecane and n-valeraldehyde as a collector. Physicochemical Problems Of Mineral Processing55: 49–57. doi:10.5277/ppmp18109
  • Liu, Z., Y. Liao, Y. Wang, M. An, and Q. Lai. 2019a. Enhancing low-rank coal flotation using a mixture of dodecane and n-valeric acid as a collector. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2019.1579202.
  • Liu, Z., Y. Xia, Q. Lai, M. An, Y. Liao, and Y. Wang. 2019b. Adsorption behavior of mixed dodecane/n-valeric acid collectors on low-rank coal surface: Experimental and molecular dynamics simulation study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 583:123840. doi:10.1016/J.COLSURFA.2019.123840.
  • Luo, B., J. Liu, Q. Liu, C. Song, L. Yu, S. Li, and H. Lai. (2019). A mechanism for the adsorption of 2-(Hexadecanoylamino)acetic acid by smithsonite: Surface spectroscopy and microflotation experiments. Minerals 9. doi:10.3390/min9010015.
  • Lyu, X., X. You, M. He, W. Zhang, H. Wei, L. Li, and Q. He. 2018. Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface. Fuel 211:529–34. doi:10.1016/j.fuel.2017.09.091.
  • Niu, C., W. Xia, and Y. Peng. 2018. Analysis of coal wettability by inverse gas chromatography and its guidance for coal flotation. Fuel 228:290–96. doi:10.1016/j.fuel.2018.04.146.
  • Nosé, S. 1984. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics 81 (1):511–19. doi:10.1063/1.447334.
  • Polat, H., and S. Chander. 1998. Interaction between physical and chemical variables in the flotation of low rank coals. Mineral and Metallurgical Process 15:41–47.
  • Thomas, J. K., K. Gunda, P. Rehbein, and F. T. T. Ng. 2010. Flow calorimetry and adsorption study of dibenzothiophene, quinoline and naphthalene over modified Y zeolites. Applied Catalysis B: Environmental 94 (3–4):225–33. 1 0.1 016/j.apcatb.2009.11.012.
  • Vamvuka, D., and V. Agridiotis. 2001. The effect of chemical reagents on lignite flotation. International Journal of Mineral Processing 61 (3):209–24. doi:10.1016/S0301-7516(00)00034-X.
  • Wang, L., Y. Hu, W. Sun, and Y. Sun. 2015. Molecular dynamics simulation study of the interaction of mixed cationic/anionic surfactants with muscovite. Applied Surface Science 327:364–70. doi:10.1016/j.apsusc.2014.11.160.
  • Wang, Y., Y. Cao, G. Li, Y. Liao, Y. Xing, and X. Gui. 2018. Combined effect of chemical composition and spreading velocity of collector on flotation performance of oxidized coal. Powder Technology 325:1–10. doi:10.1016/j.powtec.2017.09.047.
  • Wen, B., W. Xia, and J. M. Sokolovic. 2017. Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals. Powder Technology 319:1–11. doi:10.1016/j.powtec.2017.06.030.
  • Xia, W., C. Ni, and G. Xie. 2016. Effective flotation of lignite using a mixture of dodecane and 4-Dodecylphenol (DDP) as a collector. International Journal of Coal Preparation and Utilization 36:262–71. doi:10.1080/19392699.2015.1113956.
  • Xia, W., G. Xie, and Y. Peng. 2015. Recent advances in beneficiation for low rank coals. Powder Technology 277:206–21. doi:10.1016/j.powtec.2015.03.003.
  • Xia, W., and J. Yang. 2013. Enhancement in flotation of oxidized coal by oxidized diesel oil and grinding pretreatment. International Journal Of Coal Preparation And Utilization 33(6): 257–265. doi:10.1080/19392699.2013.816300
  • Xia, W., J. Yang, and C. Liang. 2013. Improving oxidized coal flotation using biodiesel as a collector. International Journal of Coal Preparation and Utilization 33:181–87. doi:10.1080/19392699.2013.776962.
  • Xia, Y., G. Rong, Y. Xing, and X. Gui. 2019a. Synergistic adsorption of polar and nonpolar reagents on oxygen-containing graphite surfaces: Implications for low-rank coal flotation, J. Journal of Colloid and Interface Science 557:276–81. doi:10.1016/j.jcis.2019.09.025.
  • Xia, Y., R. Zhang, Y. Cao, Y. Xing, and X. Gui. 2019b. Role of molecular simulation in understanding the mechanism of low-rank coal fl otation : A review. Fuel 116535. doi:10.1016/j.fuel.2019.116535.
  • Xia, Y., R. Zhang, Y. Xing, and X. Gui. 2019c. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study. Fuel 235:687–95. doi:10.1016/j.fuel.2018.07.059.
  • Xia, Y., Y. Xing, and X. Gui. 2019. Oily collector pre-dispersion for enhanced surface adsorption during fi ne low-rank coal fl otation. Journal of Industrial and Engineering Chemistry. doi:10.1016/j.jiec.2019.10.026.
  • Xia, Y., Z. Yang, R. Zhang, Y. Xing, and X. Gui. 2019a. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study. Fuel 239:145–52. doi:10.1016/j.fuel.2018.10.156.
  • Xia, Y., Z. Yang, R. Zhang, Y. Xing, and X. Gui. 2019b. Performance of used lubricating oil as flotation collector for the recovery of clean low-rank coal. Fuel 239:717–25. doi:10.1016/j.fuel.2018.11.086.
  • Xing, Y., M. Xu, M. Li, W. Jin, Y. Cao, and X. Gui. (2018). Role of DTAB and SDS in bubble-particle attachment: AFM force measurement, attachment behaviour visualization, and contact angle study. Minerals 8 (8):349. doi:10.3390/min8080349.
  • Xing, Y., X. Gui, L. Pan, B. El Pinchasik, Y. Cao, J. Liu, M. Kappl, and H. J. Butt. 2017b. Recent experimental advances for understanding bubble-particle attachment in flotation. Adv Colloid and Interface Science 246:105–32. doi:10.1016/j.cis.2017.05.019.
  • Xing, Y., X. Gui, Y. Cao, Y. Wang, M. Xu, D. Wang, and C. Li. 2017a. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technology 305:166–73. doi:10.1016/j.powtec.2016.10.003.
  • Yang, L., X. Li, W. Li, X. Yan, and H. Zhang. 2019a. Intensification of interfacial adsorption of dodecylamine onto quartz by ultrasonic method. Separation and Purification Technology 227:115701. doi:10.1016/j.seppur.2019.115701.
  • Yang, Z., Q. Teng, J. Liu, W. Yang, D. Hu, and S. Liu. 2019b. Use of NaOL and CTAB mixture as collector in selective flotation separation of enstatite and magnetite, colloids surfaces a physicochem. Colloids and Surfaces A: Physicochemical and Engineering Aspects 570:481–86. doi:10.1016/j.colsurfa.2019.03.064.
  • You, X., M. He, X. Cao, P. Wang, J. Wang, and L. Li. 2019. Molecular dynamics simulations of removal of nonylphenol pollutants by graphene oxide: Experimental study and modelling. Applied Surface Science 475:621–26. doi:10.1016/j.apsusc.2019.01.006.
  • Zhang, L., B. Li, Y. Xia, and S. Liu. 2017. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. Journal of Molecular Graphics and Modelling 76:106–17. doi:10.1016/j.jmgm.2017.06.028.
  • Zhang, Z., C. Wang, and K. Yan. 2015. Adsorption of collectors on model surface of wiser bituminous coal: A molecular dynamics simulation study. Engineering 79:31–39. doi:10.1016/j.mineng.2015.05.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.