441
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effects of rotary triboelectrification technology on macerals separation for low-rank coal

, , ORCID Icon &
Pages 3249-3263 | Received 29 Apr 2021, Accepted 27 Jun 2021, Published online: 10 Jul 2021

References

  • Arnold, B. J., and F. F. Aplan. 1989. Hydrophobicity of coal macerals. Fuel 68 (5):651–58. doi:10.1016/0016-2361(89)90168-3.
  • Bada, S., D. Tao, R. Honaker, L. Falcon, and R. Falcon. 2010. Parametric study of electrostatic separation of South African fine coal. Mining Science and Technology 20 (4):535–41. doi:10.1016/S1674-5264(09)60239-8.
  • Chen, J., and R. Honaker. 2015. Dry separation on coal–silica mixture using rotary triboelectrostatic separator. Fuel Processing Technology 131:317–24. doi:10.1016/j.fuproc.2014.11.032.
  • Cloke, M., J. Barraza, and N. J. Miles. 1997. Pilot-scale studies using a hydrocyclone and froth flotation for the production of beneficiated coal fractions for improved coal liquefaction. Fuel 76 (13):1217–23. doi:10.1016/S0016-2361(97)00031-8.
  • Dwari, R. K., and R. K. Hanumantha. 2006. Tribo-electrostatic behaviour of high ash non-coking Indian thermal coal. International Journal of Mineral Processing 81 (2):93–104. doi:10.1016/j.minpro.2006.07.006.
  • Dyrkacz, G. R., C. A. A. Bloomquist, and L. Ruscic. 1984. High-resolution density variations of coal macerals. Fuel 63 (10):1367–73. doi:10.1016/0016-2361(84)90339-9.
  • Ghislain, B., Z. Feng, and A. Seher. 2021. Coal flotation in saline water: effects of electrolytes on interfaces and industrial practice. Mineral Processing and Extractive Metallurgy Review 42 (1):52–73. doi:10.1080/08827508.2019.1654474.
  • He, X., H. Sun, X. Chen, B. Zhao, X. Zhang, and S. Komarneni. 2018a. Charging mechanism analysis of macerals during triboelectrostatic enrichment process: Insights from relative dielectric constant, specific resistivity and X-ray diffraction. Fuel 225:533–41. doi:10.1016/j.fuel.2018.03.189.
  • He, X., H. Sun, W. Wang, and X. Zhang. 2020. Predictions of triboelectrostatic separation of minerals in low-rank coal based on surface charging characteristics in relation to their structures. Fuel 264:116824. doi:10.1016/j.fuel.2019.116824.
  • He, X., H. Sun, B. Zhao, X. Chen, X. Zhang, and S. Komarneni. 2018b. Tribocharging of macerals with various materials: Role of surface oxygen-containing groups and potential difference of macerals. Fuel 233:759–68. doi:10.1016/j.fuel.2018.06.109.
  • He, X., X. X. Zhang, Y. Jiao, J. S. Zhu, X. W. Chen, and C. Y. Li. 2017. Complementary analyses of infrared transmission and diffuse reflection spectra of macerals in low-rank coal and application in triboelectrostatic benefication of active maceral. Fuel 192:93–101. doi:10.1016/j.fuel.2016.12.009.
  • Hu, H., M. Li, L. Li, and X. Tao. 2020. Improving bubble-particle attachment during the flotation of low rank coal by surface modification. International Journal of Mining Science and Technology 30 (2):217–23. doi:10.1016/j.ijmst.2019.04.001.
  • Inculet, I. I., M. A. Bergougnou, and J. D. Brown. 1982. Physical Cleaning of Coal Present and Developing Methods, 87–131. New York: Marcel Dekker. doi:10.1016/0016-2361(84)90332-6.
  • Jorjani, E., S. Esmaeili, and M. Tayebi-Khorami. 2013. The effect of particle size on coal maceral group’s separation using flotation. Fuel 114:10–15. doi:10.1016/j.fuel.2012.09.025.
  • Kalenda, T. N., B. North, and N. Naude. 2020. Evaluation of ilmenite as dense medium for dry coal fluidized bed beneficiation. Mineral Processing and Extractive Metallurgy Review 40 (5):323–32. doi:10.1080/08827508.2019.1635474.
  • Li, X., H. Hu, L. Jin, S. Hu, and B. Wu. 2008. Approach for promoting liquid yield in direct liquefaction of Shenhua coal. Fuel Processing Technology 89 (11):1090–95. doi:10.1016/j.fuproc.2008.05.003.
  • Li, Z., Y. Fu, A. Zhou, C. Zhu, C. Yang, N. Shen, and C. Yang. 2019. Effect of multi-intensification on the liberation of maceral components in coal. Fuel 237:1003–12. doi:10.1016/j.fuel.2018.10.024.
  • Ma, F., D. Tao, Y. Tao, Y. Xian, and M. Zhang. 2020b. Effects of pulverized coal modification on rotary triboelectric separation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (Online):1–13. doi:10.1080/15567036.2020.1772908.
  • Ma, F., Y. Tao, J. Liu, and Y. Xian. 2020a. Flow field and particle motion characteristics of rotary triboelectric separator based on CFD simulation. International Journal of Coal Preparation and Utilization (Online):1–22. doi:10.1080/19392699.2020.1847094.
  • Nasirimoghaddam, S., A. Mohebbi, M. Karimi, and Y. M. Reza. 2020. Assessment of pH-responsive nanoparticles performance on laboratory column flotation cell applying a real ore feed. International Journal of Mining Science and Technology 30 (2):197–205. https://doi.org/10.1016/j.ijmst.2020.01.001.
  • Osman, H., S. V. Jangam, J. D. Lease, and A. S. Mujumdar. 2011. Drying of low-rank coal (lrc)-a review of recent patents and innovations. Drying Technology 29 (15):1763–83. doi:10.1080/07373937.2011.616443.
  • Roberts, M. J., R. C. Everson, H. W. J. P. Neomagus, D. Van Niekerk, J. P. Mathews, and D. J. Branken. 2015. Influence of maceral composition on the structure, properties and behaviour of chars derived from South African coals. Fuel 142:9–20. doi:10.1016/j.fuel.2014.10.033.
  • Sayed, J. A., K. T. Sunil, D. Anish, S. Rashmi, and A. K. Mukherjee. 2020. Comparative response on flotation of coal by using process and de-ionized water. Mineral Processing and Extractive Metallurgy Review 41 (6):367–69. doi:10.1080/08827508.2019.1654473.
  • Shobhana, D., S. Laxmikanta, C. Binish, and N. Bibhuranjan. 2020. Prospects of utilization of waste dumped low-grade limestone for iron making: A case study. International Journal of Mining Science and Technology 30 (3):367–72. https://doi.org/10.1016/j.ijmst.2020.03.011.
  • Shu, X. Q., Z. N. Wang, and J. Q. Xu. 2002. Separation and preparation of macerals in Shenfu coals by flotation. Fuel 81 (4):495–501. doi:10.1016/S0016-2361(01)00106-5.
  • Tao, D., and M. Al-Hwaiti. 2010. Beneficiation study of Eshidiya phosphorites using a rotary triboelectrostatic separator. Mining Science and Technolog 20 (3):357–64. doi:10.1016/s1674-5264(09)60208-8.
  • Tao, D., A. Sobhy, Q. Li, R. Honaker, and Y. Zhao. 2011. Dry cleaning of pulverized coal using a novel rotary triboelectrostatic separator (RTS). International Journal of Coal Preparation and Utilization 31 (3–4):187–202. doi:10.1080/19392699.2011.574945.
  • Tao, Y., L. Zhang, D. Tao, Y. Xian, and Q. Sun. 2017. Effects of key factors of rotary triboelectrostatic separator on efficiency of fly ash decarbonization. International Journal of Mining Science and Technology 27 (6):1037–42. doi:10.1016/j.ijmst.2017.06.004.
  • Tran, Q. A., R. Stanger, W. Xie, J. Lucas, J. Yu, M. Stockenhuber, E. Kennedy, and T. Wall. 2016. Maceral separation from coal by the Reflux Classifier. Fuel Processing Technology 143:43–50. doi:10.1016/j.fuproc.2015.11.009.
  • Wang, S. Q., Y. G. Tang, H. Chen, P. H. Liu, and Y. M. Sha. 2018. Chemical structural transformations of different coal components at the similar coal rank by HRTEM in situ heating. Fuel 218:140–47. doi:10.1016/j.fuel.2018.01.024.
  • Xia, Y., R. Zhang, Y. Xing, and X. Gui. 2019. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study. Fuel 235:687–95. doi:10.1016/j.fuel.2018.07.059.
  • Xie, K. C., J. Y. Lin, W. Y. Li, L. P. Chang, J. Feng, and W. Zhao. 2005. Formation of HCN and NH3 during coal macerals pyrolysis and gasification with CO2. Fuel 84 (2–3):271–77. doi:10.1016/j.fuel.2004.07.012.
  • Yan, Y., Y. Qi, M. Marshall, W. R. Jackson, and A. L. Chaffee. 2019. Separation and analysis of maceral concentrates from Victorian brown coal. Fuel 242:232–42. doi:10.1016/j.fuel.2019.01.025.
  • Zhang, J., Y. J. Tao, W. C. Zhang, Z. X. Shi, Y. P. Wang, and Y. N. Zhao. 2019. Experimental study on the macerals enrichment of Shenhua low-rank coal by Falcon centrifugal concentrator. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (21):2588–600. doi:10.1080/15567036.2018.1563248.
  • Zhang, L., Y. J. Tao, and L. Yang. 2018. Research on flow field and kinematic characteristics of fly ash particles in rotary triboelectrostatic separator. Powder Technology 336:168–79. doi:10.1016/j.powtec.2018.05.055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.