215
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Application of fractional factorial design for evaluating the separation performance of the screening machine

ORCID Icon, , , , &
Pages 3369-3379 | Received 08 May 2021, Accepted 27 Jul 2021, Published online: 04 Aug 2021

References

  • Chérif, M., I. Mkacher, L. Dammak, A. Ben Salah, K. Walha, V. Nikonenko, S. Korchane, and D. Grande. 2016. Fractional factorial design of water desalination by neutralization dialysis process: Concentration, flow rate, and volume effects. Desalination and Water Treatment 57 (31):14403–13. doi:10.1080/19443994.2015.1076350.
  • Elemary, B. R. 2019. Evaluation and improvement of promising rubber recycling OT machine using fractional factorial and response surface design. Communications in Statistics: Case Studies, Data Analysis and Applications 5 (2):121–37. doi:10.1080/23737484.2019.1603091.
  • El-Taweel, T. A., and S. Haridy. 2014. An application of fractional factorial design in wire electrochemical turning process. International Journal of Advanced Manufacturing Technology 75 (5–8):1207–18. doi:10.1007/s00170-014-6179-7.
  • Hanumanthappa, H., H. Vardhan, G. R. Mandela, M. Kaza, R. Sah, and B. K. Shanmugam. 2020c. Estimation of grinding time for desired particle size distribution and for hematite liberation based on ore retention time in the mill. Mining, Metallurgy & Exploration 37 (2):481–92. doi:10.1007/s42461-019-00167-8.
  • Hanumanthappa, H., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and B. K. Shanmugam. 2020a. A comparative study on a newly designed ball mill and the conventional ball mill performance with respect to the particle size distribution and recirculating load at the discharge end. Minerals Engineering 145:106091. doi:10.1016/j.mineng.2019.106091.
  • Hanumanthappa, H., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, B. K. Shanmugam, and P. Suribabu. 2020b. Investigation on iron ore grinding based on particle size distribution and liberation. Transactions of the Indian Institute of Metals 73 (7):1853–66. doi:10.1007/s12666-020-01999-5.
  • Harish, H., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, A. Sinha, and S. B. Kumar. 2020. Investigation of iron ores based on the bond grindability test. AIP Conference Proceedings 2204:040006. doi:10.1063/1.5141579.
  • Houwelingen, J. A. V., and T. P. R. de Jong. 2004. Dry cleaning of coal: Review. Fundamentals, and opportunities, Geologica Belgica [En ligne]. Proceedings of the 5th European Coal Conference 7 (3–4):335–43. https://popups.uliege.be:443/1374-8505/index.php?id=460.
  • Kazemi-Beydokhti, A., H. A. Namaghi, and S. Z. Heris. 2013. Identification of the key variables on thermal conductivity of CuO nanofluid by a fractional factorial design approach, numerical heat transfer. Part B: Fundamentals: An International Journal of Computation and Methodology 64 (6):480–95. doi:10.1080/10407790.2013.831674.
  • Kumar, B. S., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2018. Shortcomings of vibrating screen and corrective measures: A review. International Conference on Emerging Trends in Engineering (ICETE) 2 (43):345–51. doi:10.1007/978-3-030-24314-2.
  • Kumar, B. S., M. Harsha Vardhan, G. Raj, M. Kaza, R. Sah, and H. Harish. 2020. The screening efficiency of linear vibrating screen - An experimental investigation. AIP Conference Proceedings 2204:040002. doi:10.1063/1.5141575.
  • Lopamudra Panda, L., A. K. Sahoo, A. Tripathy, S. K. Biswal, and A. K. Sahu. 2012. Application of artificial neural network to study the performance of jig for beneficiation of non-coking coal. Fuel 97:151–56. doi:10.1016/j.fuel.2012.02.018.
  • Mohanraj, G. T., M. R. Rahman, S. Joladarashi, H. Hanumanthappa, B. K. Shanmugam, H. Vardhan, and S. A. Rabbani. 2021. Design and fabrication of optimized magnetic roller for permanent roll magnetic separator (PRMS): Finite element method magnetics (FEMM) approach. Advanced Powder Technology 2021:0921–8831. doi:10.1016/j.apt.2021.01.003.
  • Raman, G. S. S., and M. S. Klima. 2017. Evaluation of pressure filtration of coal refuse slurry: A fractional factorial design approach. International Journal of Coal Preparation and Utilization. doi:10.1080/19392699.2017.1329726.
  • Sahu, A. K., S. K. Biswal, and A. Parida. 2009. Development of air dense medium fluidized bed technology for dry beneficiation of coal – A review. International Journal of Coal Preparation and Utilization 29 (4):216–41. doi:10.1080/19392690903113847
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2019a. Evaluation of a new vibrating screen for dry screening fine coal with different moisture contents. International Journal of Coal Preparation and Utilization 1–10. doi:10.1080/19392699.2019.1652170.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah., and H. Harish. 2019b. Screening performance of coal of different size fractions with variation in International Journal of Coal Preparation and Utilizationdesign and operational flexibilities of the new screening machine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–9. doi:10.1080/19392699.2019.1652170.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2020. Experimentation and statistical prediction of screening performance of coal with different moisture content in the vibrating screen. International Journal of Coal Preparation and Utilization 1–14. doi:10.1080/19392699.2020.1767606.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2021a. Artificial neural network modelling for predicting the screening efficiency of coal with varying moisture content in the vibrating screen. International Journal of Coal Preparation and Utilization 1–19. doi:10.1080/19392699.2021.1871610.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2021b. ANN modeling and residual analysis on screening efficiency of coal in vibrating screen. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2021.1910505.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2021c. Regression modelling and residual analysis of screening coal in screening machine. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2021.1923488.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2021d. Investigation on the operational parameters of screening coal in the vibrating screen using Taguchi L27 technique. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2021.1957854.
  • Shanmugam, B. K., M. Kaza, H. Vardhan, M. G. Raj, R. Sah, A. R. Choudhary, N. Onkarappa, and N. Venkategouda. 2018. Material handling system for screening or feeding materials with high screening efficiency and energy efficiency. Publication Number 201821048990, Publication Date 26- 06-2020.
  • Suard, S., S. Hostikka, and J. Baccou. 2013. Sensitivity analysis of fire models using a fractional factorial design. Fire Safety Journal 62:115–24. doi:10.1016/j.firesaf.2013.01.031.
  • Tan, K. A., N. Morad, T. T. Teng, N. Ismail, and P. Panneerselvam. 2012. Screening of factors influencing the adsorption of methylene blue aqueous solution onto raw maize cobs using fractional factorial design. Journal of Dispersion Science and Technology 33 (12):1730–38. doi:10.1080/01932691.2011.629521.
  • Wang, Z., L. Peng, C. Zhang, L. Qi, C. Liu, and Y. Zhao. 2019. Research on impact characteristics of screening coals on vibrating screen based on discrete-finite element method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–14. doi:10.1080/15567036.2019.1604905.
  • Wodzinski, P. 2003. Screening of fine granular material. Coal Preparation 23 (4):183–211. doi:10.1080/07349340302258.
  • Zhao, Y., L. Jiongtian, W. Xianyong, L. Zhenfu, C. Qingru, and S. Shulei. 2011. New progress in the processing and efficient utilization of coal. Mining Science and Technology (China) 21 (4):547–52. doi:10.1016/j.mstc.2011.06.015.
  • Zhovtiuk, G. V. 1988. Wet sizing of coals on stationary screens. Coal Preparation 5 (3–4):229–41. doi:10.1080/07349348808945567.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.