216
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Following performance of solid particle and liquid phases inside a hydrocyclone

, , , &
Pages 693-710 | Received 28 May 2021, Accepted 16 Aug 2021, Published online: 24 Aug 2021

References

  • Bayo, J., J. López-Castellanos, R. Martínez-García, A. Alcolea, and C. Lardín. 2015. Hydrocyclone as a cleaning device for anaerobic sludge digesters in a wastewater treatment plant. Journal of Cleaner Production 87:550–57. doi:10.1016/j.jclepro.2014.10.064.
  • Ghodrat, M., S. B. Kuang, A. B. Yu, A. Vince, G. D. Barnett, and P. J. Barnett. 2013. Computational study of the multiphase flow and performance of hydrocyclones: Effects of cyclone size and spigot diameter. Indian Engineering Chemical Research 52 (45):16019–31. doi:10.1021/ie402267b.
  • Golmaei, M., T. Kinnarinen, E. Jernström, and A. Häkkinen. 2018. Efficient separation of hazardous trace metals and improvement of the filtration properties of green liquor dregs by a hydrocyclone. Journal of Cleaner Production 183:162–71. doi:10.1016/j.jclepro.2018.02.123.
  • He, M. Y., Y. H. Zhang, L. Ma, H. L. Wang, P. B. Fu, and Z. H. Zhao. 2018. Study on flow field characteristics in a reverse rotation cyclone with PIV. Chemical Engineering & Processing: Process Intensification 126:100–07. doi:10.1016/j.cep.2018.02.026.
  • Huang, C., J. G. Wang, J. Y. Wang, C. Chen, and H. L. Wang. 2013. Pressure drop and flow distribution in a mini-hydrocyclone group: UU-type parallel arrangement. Separation and Purification Technology 103: 2012.10.030: 139–50. doi:10.1016/j.seppur.
  • Hwang, K. J., and S. P. Chou. 2017. Designing vortex finder structure for improving the particle separation efficiency of a hydrocyclone. Separation and Purification Technology 172:76–84. doi:10.1016/j.seppur.2016.08.005.
  • Im, I. T., G. D. Gwak, S. M. Kim, and Y. K. Park. 2018. A numerical study of the flow characteristics and separation efficiency of a hydrocyclone. KSCE Journal of Civil Engineering 22 (11):4272–81. doi:10.1007/s12205-018-1780-1.
  • Ji, L., J. Chen, S. Kuang, Z. Qi, K. Chu, and A. Yu. 2019. Prediction of separation performance of hydrocyclones by a PC-based model. Separation and Purification Technology 211:141–50. doi:10.1016/j.seppur.2018.09.073.
  • Kharoua, N., L. Khezzar, and Z. Nemouchi 2010. Computational fluid dynamics study of the parameters affecting oil-water hydrocyclone performance. Proceedigs of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering 224 (2): 119–128. doi: 10.1243/09544089JPME304.
  • Kyriakidis, Y. N., D. O. Silva, M. A. S. Barrozo, and L. G. M. Vieira. 2018. Effect of variables related to the separation performance of a hydrocyclone with unprecedented geometric relationships. Powder Technology 338:645–53. doi:10.1016/j.powtec.2018.07.064.
  • Lim, E. W. C., Y. R. Chen, C. H. Wang, and R. M. Wu. 2010. Experimental and computational studies of multiphase hydrodynamics in a hydrocyclone separator system. Chemical Engineering Science 65 (24):6415–24. doi:10.1016/j.ces.2010.09.029.
  • Liu, Z., J. Jiao, and Y. Zheng. 2006. Study of axial velocity in gas cyclones by 2D-PIV, 3D-PIV, and simulation. China Particuology 4 (3–4):204–10. doi:10.1016/S1672-2515(07)60262-0.
  • Marins, L. P. M., D. G. Duarte, J. B. R. Loureiro, C. A. C. Moraes, and A. P. S. Freire. 2010. LDA and PIV characterization of the flow in a hydrocyclone without an air-core. Journal of Petroleum Science and Engineering 70 (3–4):168–76. doi:10.1016/j.petrol.2009.11.006.
  • Mokni, I., H. Dhaouadi, P. Bournot, and H. Mhiri. 2015. Numerical investigation of the effect of the cylindrical height on separation performances of uniflow hydrocyclone. Chemical Engineering Science 122:500–13. doi:10.1016/j.ces.2014.09.020.
  • Narasimha, M., M. Brennan, and P. N. Holtham. 2014. A review of CFD modelling for performance predictions of hydrocyclone. Engineering Applications of Computational Fluid Mechanics 1 (2):109–25. doi:10.1080/19942060.2007.11015186.
  • Narasimha, M., M. S. Brennan, and P. N. Holtham. 2012. CFD modeling of hydrocyclones: Prediction of particle size segregation. Minerals Engineering 39:173–83. doi:10.1016/j.mineng.2012.05.010.
  • Ni, L., J. Tian, T. Song, Y. Jong, and J. Zhao. 2018. Optimizing geometric parameters in hydrocyclones for enhanced separations: A review and perspective. Separation & Purification Reviews 48 (1):30–51. doi:10.1080/15422119.2017.1421558.
  • Razmi, H., A. S. Goharrizi, and A. Mohebbi. 2019. CFD simulation of an industrial hydrocyclone based on multiphase particle in cell (MPPIC) method. Separation and Purification Technology 209:851–62. doi:10.1016/j.seppur.2018.06.073.
  • Tang, B., Y. Xu, X. Song, Z. Sun, and J. Yu. 2015. Numerical study on the relationship between high sharpness and configurations of the vortex finder of a hydrocyclone by central composite design. Chemical Engineering Journal 278:504–16. doi:10.1016/j.cej.2014.11.022.
  • Tang, B., Y. X. Xu, X. F. Song, Z. Sun, and J. G. Yu. 2017. Effect of inlet configuration on hydrocyclone performance. Trans. Nonferrous Metals Society of China 27:1645–55. doi:10.1016/S1003-6326(17)60187-0.
  • Tian, J., L. Ni, T. Song, J. Olson, and J. Zhao. 2018. An overview of operating parameters and conditions in hydrocyclones for enhanced separations. Separation and Purification Technology 206:268–85. doi:10.1016/j.seppur.2018.06.015.
  • Vakamalla, T. R., and N. Mangadoddy. 2017. Numerical simulation of industrial hydrocyclones performance: Role of turbulence modelling. Separation and Purification Technology 176:23–39. doi:10.1016/j.seppur.2016.11.049.
  • Xu, Y., B. Tang, X. Song, Z. Sun, and J. Yu. 2018. Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone. Korean Journal Chemical Engineering 35 (12):2355–64. doi:10.1007/s11814-018-0171-0.
  • Zeng, X. B., L. Zhao, W. G. Zhao, M. W. Hou, F. Q. Zhu, G. M. Fan, and C. Q. Yan. 2020. Experimental study on a novel axial separator for oil−water separation. Indian Engineering Chemical Research 59:21177–86. doi:10.1021/acs.iecr.0c03913.
  • Zhang, Y. M., P. Cai, F. H. Jiang, K. J. Dong, Y. C. Jiang, and B. Wang. 2017. Understanding the separation of particles in a hydrocyclone by force analysis. Powder Technology 322:471–89. doi:10.1016/j.powtec.2017.09.031.
  • Zhou, Q., C. Wang, H. Wang, and J. Wang. 2016. Eulerian–Lagrangian study of dense liquid–solid flow in an industrial-scale cylindrical hydrocyclone. International Journal of Mineral Processing 151:40–50. doi:10.1016/j.minpro.2016.04.005.
  • Zhu, G., J. L. Liow, and A. Neely. 2012. Computational study of the flow characteristics and separation efficiency in a mini-hydrocyclone. Chemical Engineering Research & Design 90 (12):2135–47. doi:10.1016/j.cherd.2012.05.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.