129
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Enhancement on the separation precision of fine particles in a novel hydrocyclone with the vorticose involute-line diversion inlet head

ORCID Icon, , , , , , & show all
Pages 169-189 | Received 20 Sep 2021, Accepted 15 Jan 2022, Published online: 14 Feb 2022

References

  • Chen, J., K. Chu, R. Zou, A. Yu, A. Vince, G. D. Barnett, and P. J. Barnett. 2016. Systematic study of effect of particle size distribution in a dense medium cyclone by Johnson’s SB function. Mineral Engineering 91:16–33. doi:10.1016/j.mineng.2015.12.001.
  • Chu, L., W. Chen, and X. Lee. 2002. Effects of geometric and operating parameters and feed characters on the motion of solid particles in hydrocyclones. Separation and Purification Technology 26 (2–3):237–46. doi:10.1016/S1383-5866(01)00171-X.
  • Cui, B. Y., D. Z. Wei, S. L. Gao, W. G. Liu, and Y. Q. Feng. 2014. Numerical and experimental studies of flow field in hydrocyclone with air core. Transaction of Nonferrous Metals Society of China 24 (24):2642–49. doi:10.1016/S1003-6326(14)63394-X.
  • Cui, B., C. Zhang, D. Wei, L. Shuaishuai, and Y. Feng. 2017. Effects of feed size distribution on separation performance of hydrocyclones with different vortex finder diameters. Powder Technology 322 (322):114–23. doi:10.1016/j.powtec.2017.09.010.
  • Delgadillo, J. A. 2006. Modelling of 75- and 250-Mm hydrocyclones and exploration of novel designs using computational fluid dynamics. Department of Metallurgical Engineering, University of Utah, USA.
  • Demir, S. 2014. A practical model for estimating pressure drop in cyclone separators: An experimental study. Powder Technology 268 (268):329–38. doi:10.1016/j.powtec.2014.08.024.
  • Demir, S., A. Karadeniz, and M. Aksel. 2016. Effects of cylindrical and conical heights on pressure and velocity fields in cyclones. Powder Technology 295:209–17. doi:10.1016/j.powtec.2016.03.049.
  • Feng, L., P. Liu, X. Yang, Y. Zhang, L. Xiaoyu, L. Jiang, H. Wang, and F. Wenxiu. 2021. Numerical analysis on the effect of the length of arc-shaped vortex finder on the hydrocyclone’s flow field and separation performance. Minerals Engineering 172:107172. doi:10.1016/j.mineng.2021.107172.
  • Ghodrat, M., S. B. Kuang, A. B. Yu, A. Vince, G. D. Barnett, and P. J. Barnett. 2014. Numerical analysis of hydrocyclones with different conical section designs. Mineral Engineering 62:74–84. doi:10.1016/j.mineng.2013.12.003.
  • Ghodrat, M., Z. Qi, S. B. Kuang, L. Ji, and A. B. Yu. 2016. Computational investigation of the effect of particle density on the multiphase flows and performance of hydrocyclone. Minerals Engineering 90:55–69. doi:10.1016/j.mineng.2016.03.017.
  • Hirt, C. W., and B. D. Nichols. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics. Phys 39 (1):201–25. doi:10.1016/0021-9991(81)90145-5.
  • Hsieh, K. T. 1988. Phenomenological Model of the Hydrocyclone. Salt Lake City, USA: The University of Utah.
  • Hsu, C. Y., and R. M. Wu. 2010. Effect of overflow depth of a hydrocyclone on particle separation. Drying Technology 28 (7):916–21. doi:10.1080/07373937.2010.490770.
  • Kashiwaya, K., T. Noumachi, N. Hiroyoshi, M. Ito, and M. Tsunekawa. 2012. Effect of particle shape on hydrocyclone classification. Powder Technology 226:147–56. doi:10.1016/j.powtec.2012.04.036.
  • Kyriakidis, Y. N., D. O. Silva, M. A. S. Barrozo, and L. G. M. Vieira. 2018. Effect of variables related to the separation performance of a hydrocyclone with unprecedented geometric relationships. Powder Technology 338:645–53. doi:10.1016/j.powtec.2018.07.064.
  • Marins, L. P. M., D. G. Duarte, J. B. R. Loureiro, C. A. C. Moraes, and A. P. S. Freire. 2010. LDA and PIVcharacterization of the flow in a hydrocyclone without an air-core. Journal of Petroleum Science and Engineering 70 (3–4):168–76. doi:10.1016/j.petrol.2009.11.006.
  • Murthy, Y. R., and K. U. Bhaskar. 2012. Parametric CFD studies on hydrocyclone. PowderTechnology 230:36–47. doi:10.1016/j.powtec.2012.06.048.
  • Ni, L., J. Y. Tian, and J. N. Zhao. 2016. Experimental study of the relationship between separation performance and lengths of vortex finder of a novel de-foulant hydrocyclone with continuous underflow and reflux function. Separation Science and Technology 52 (1):142–54. doi:10.1080/01496395.2016.1250780.
  • Song, C., B. Pei, M. Jiang, B. Wang, D. Xu, and Y. Chen. 2016. Numerical analysis of forces exerted on particles in cyclone separators. Powder Technology 294 (294):437–48. doi:10.1016/j.powtec.2016.02.052.
  • Tian, J. Y., L. Ni, T. Song, J. Olson, and J. N. Zhao. 2018. An overview of operating parameters and conditions in hydrocyclones for enhanced separations. Separation and Purifation Technol 206:268–85. doi:10.1016/j.seppur.2018.06.015.
  • Zhao, Q., B. Cui, D. Wei, T. Song, and Y. Feng. 2019. Numerical analysis of the flow field and separation performance in hydrocyclones with different vortex finder wall thickness. Powder Technology 345:478–91. doi:10.1016/j.powtec.2019.01.030.
  • Zubrik, A., S. Hredzak, L. Turcaniova, M. Lovas, I. Bergmann, K. D. Becker, M. Lukcova, andV. Sepelak, and V. Šepelák. 2010. Distribution of inorganic and organic substances in the hydrocyclone separated Slovak sub-bituminous coal. Fuel 89 (8):2126–32. doi:10.1016/j.fuel.2010.03.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.