256
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Influences of the pre-oxidation time on coal secondary spontaneous combustion behaviors by temperature-programmed technique

, , &
Pages 190-202 | Received 13 Nov 2021, Accepted 14 Jan 2022, Published online: 01 Feb 2022

References

  • Cai, Z. Q., and S. Lin. 2021. IOP conference series: experimental study on spontaneous combustion prediction system of no. 12 Coal seam in tongxin coal mine. Paper presented at the 6th International Symposium on Energy Science and Chemical Engineering Harbin, China. January 22-24.
  • Choi, H., W. Jo, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim, and S. Lee. 2014. Comparison of spontaneous combustion susceptibility of coal dried by different processes from low-rank coal. Korean Journal of Chemical Engineering 31 (12):2151–56. doi:10.1007/s11814-014-0174-4.
  • Deng, J., H. Jiang, and H. Wen. 2013. Experimental study on typical coal mine fire gas indices. Proceeding of 23rd World mining congress, Canadian Institute of Mining, Metallurgy and Petroleum. Montreal, Canada. Aug 11-15.
  • Deng, J., J. Y. Zhao, Y. N. Zhang, A. C. Huang, X. R. Liu, X. W. Zhai, and C. P. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Safety and Environmental Protection 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Deng, J., J. Y. Zhao, Y. N. Zhang, and C. P. Wang. 2016. Micro-characteristics of spontaneous combustion of second oxidation with different rank coals. Journal of China Coal Society. (Chinese) 41 (5):1164–72. doi:10.13225/j.cnki.jccs.2015.1134.
  • Deng, J., J. Y. Zhao, Y. N. Zhang, and R. L. Geng. 2014. Study on coal spontaneous combustion characteristic temperature of growth rate analysis. Procedia Engineering 84:796–805. doi:10.1016/j.proeng.2014.10.498.
  • Deng, J., Z. Bai, Y. Xiao, C.-M. Shu, and L. W. Bin. 2019. Effects of imidazole ionic liquid on macro-parameters and microstructure of bituminous coal during low-temperature oxidation. Fuel 246:160–68. doi:10.1016/j.fuel.2019.02.066.
  • Fan, H. H., K. Wang, X. W. Zhai, and L. H. Hu. 2021a. Combustion kinetics and mechanism of pre-oxidized coal with different oxygen concentrations. ACS omega 6 (29):19170–82. doi:10.1021/acsomega.1c02520.
  • Fan, S., H. Wen, D. Zhang, Z. Yu, and X. J. Cheng. 2021b. Effects of crude oil on the microstructure and spontaneous combustion characteristics of coal: A case study of weakly caking coal in the Huangling No. 2 mine, China. Journal of Thermal Analysis and Calorimetry 144 (2):539–51. doi:10.1007/s10973-020-10092-4.
  • He, Q., W. Peng, and H. Yuan. 2012. Technologies of open the fired zone of 1504 working surface in Jiaxin coalmine safely. Procedia Engineering 45:893–97. doi:10.1016/j.proeng.2012.08.255.
  • Huang, Z., J. Li, Y. Gao, Z. Shao, Y. Zhang, and Y. Wang. 2020. Thermal behavior and characteristics of functional groups on lignite secondary oxidation. Combustion Science and Technology 1–18. doi:10.1080/00102202.2020.1787395.
  • Kong, B., E. Wang, and Z. Li. 2018. The effect of high temperature environment on rock properties—an example of electromagnetic radiation characterization. Environmental Science and Pollution Research 25 (29):29104–14. doi:10.1007/s11356-018-2940-z.
  • Lei, C. k., J. Deng, K. Cao, L. Ma, Y. Xiao, and L. F. Ren. 2018. A random forest approach for predicting coal spontaneous combustion. Fuel 223:63–73. doi:10.1021/acsomega.1c02520.
  • Li, D. J., Y. Xiao, H. F. Lü, L. W. Bin, and C.-M. Shu. 2020a. Thermokinetic behavior and functional group variation during spontaneous combustion of raw coal and its protoxidized form. RSC Advances 10 (41):24472–82. doi:10.1039/d0ra03310c.
  • Li, J. H., Z. H. Li, Y. L. Yang, and C. J. Wang. 2018. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. Fuel 233:237–46. doi:10.1016/j.fuel.2018.06.039.
  • Li, J. H., Z. H. Li, Y. L. Yang, J. H. Niu, Q. X. Meng. 2019a. Insight into the chemical reaction process of coal self-heating after N2 drying. Fuel 255:115780. doi:10.1016/j.fuel.2019.115780.
  • Li, J. H., Z. H. Li, Y. L. Yang, J. H. Niu, and Q. X. Meng. 2019b. Room temperature oxidation of active sites in coal under multi-factor conditions and corresponding reaction mechanism. Fuel 256:115901. doi:10.1016/j.fuel.2019.115901.
  • Li, N., X. L. Li, C. Shu, W. L. Shen, M. He, and J. J. Meng. 2020b. Study of the influence of the characteristics of loose residual coal on the spontaneous combustion of coal gob. Energy Science & Engineering 8 (3):689–701. doi:10.1002/ese3.542.
  • Liang, Y. T., F. C. Tian, H. Z. Luo, and H. Tang. 2015. Characteristics of coal re-oxidation based on microstructural and spectral observation. International Journal of Mining Science and Technology 25 (5):749–54. doi:10.1016/j.ijmst.2015.07.008.
  • Lin, S., Z. Liu, J. Qian, and X. Li. 2019. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion. Fuel 251:438–46. doi:10.1016/j.fuel.2019.04.080.
  • Ma, L., W. C. Yu, L. F. Ren, X. Y. Qin, and Q. L. Wang. 2019a. Micro-characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres. Fuel 246:259–67. doi:10.1016/j.fuel.2019.02.073.
  • Ma, T., X. K. Chen, X. W. Zhai, and Y. Bai . 2019b. Thermogravimetric and infrared spectroscopic studies of the spontaneous combustion characteristics of different pre-oxidized lignites. RSC Advances 9 (56):32476–89. doi:10.1039/c9ra05993h.
  • Onifade, M., B. Genc, K. O. Said, and A. R. Gbadamosi et al. 2021. On the spontaneous combustion liability of South African coal: A report. International Journal of Coal Preparation and Utilization 1–19. doi:10.1080/19392699.2021.1884554.
  • Perdochova, M., K. Derychova, H. Veznikova, A. Bernatik, and M. Pitt. 2015. The influence of oxygen concentration on the composition of gaseous products occurring during the self-heating of coal and wood sawdust. Process Safety and Environmental Protection 94:463–70. doi:10.1016/j.psep.2014.10.006.
  • Qi, S., D. Wang, K. Zheng, J. Xu, X. Qi, and X. Zhong. 2015. Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air. Journal of Loss Prevention in the Process Industries 35:224–31. doi:10.1016/j.jlp.2015.05.011.
  • Qi, X. Y., Q. Z. Li, H. J. Zhang, and H. H. Xin . 2017. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. Journal of the Energy Institute 90 (4):544–55. doi:10.1016/j.joei.2016.05.007.
  • Roy, D., G. Singh, and Y.-C. Seo. 2019. Coal mine fire effects on carcinogenicity and non-carcinogenicity human health risks. Environmental Pollution 254:113091. doi:10.1016/j.envpol.2019.113091.
  • Shen, B., J. Huang, Y. P. Cao, and F. X. Zhang. 2021. Macroscopic characteristics and microstructure change of coal during low temperature oxidation. Journal of East China University of Science and Technology 47(1):17–25. (Chinese). doi:10.14135/j.cnki.1006-3080.20191028001.
  • Shi, Q. L., B. T. Qin, Q. Bi, and B. Qu . 2018. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China. Fuel 226:307–15. doi:10.1016/j.fuel.2018.04.027.
  • Song, S., B. Qin, H. Xin, X. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Tahmasebi, A., H. Zheng, and J. Yu. 2016. The influences of moisture on particle ignition behavior of Chinese and Indonesian lignite coals in hot air flow. Fuel Processing Technology 153:149–55. doi:10.1016/j.fuproc.2016.07.017.
  • Wang, C. P., Y. Yang, Y. T. Tsai, J. Deng, and C.-M. Shu. 2016. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. Journal of Thermal Analysis and Calorimetry 126 (3):1591–602. doi:10.1007/s10973-016-5685-2.
  • Wang, G., Q. Liu, L. Sun, X. Song, W. Du, D. Yan, and Y. Wang. 2018a. Secondary spontaneous combustion characteristics of coal based on programmed temperature experiments. Journal of Energy Resources Technology 140(8). doi: 10.1115/1.4039659.
  • Wang, K., J. Deng, Y. N. Zhang, C.-P. Wang, et al. 2018b. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG–FTIR and in situ IR analysis. Journal of Thermal Analysis and Calorimetry 132 (1):591–98. doi:10.1007/s10973-017-6916-x.
  • Wang, K., X. R. Liu, J. Deng, Y. N. Zhang, and S. R. Jiang. 2019. Effects of pre-oxidation temperature on coal secondary spontaneous combustion. Journal of Thermal Analysis and Calorimetry 138 (2):1363–70. doi:10.1007/s10973-019-08138-3.
  • Wang, K., Y. Z. He, H. H. Fan, and B. Shang . 2020. Study of the coal secondary spontaneous combustion behavior under different pre-heating oxygen concentrations. Journal of Thermal Analysis and Calorimetry 1–8. doi:10.1007/s10973-020-10036-y.
  • Xia, W. C., G. Y. Xie, C. Liang, and J. G. Yang. 2014. Flotation behavior of different size fractions of fresh and oxidized coals. Powder Technology 267:80–85. doi:10.1016/j.powtec2014.07.017.
  • Xiao, Y., T. Guo, C.-M. Shu, Q. W. Li, D. J. Li, and L. G. Chen. 2020. Effects of oxygen concentrations on the coal oxidation characteristics and functional groups. Journal of Thermal Analysis and Calorimetry 142 (2):899–912. doi:10.1007/s10973-020-09607-w.
  • Xu, Q., S. Q. Yang, W. M. Yang, Z. Q. Tang, X. C. Hu, W. X. Song, and B. Z. Zhou. 2020. Micro-structure of crushed coal with different metamorphic degrees and its low-temperature oxidation. Process Safety and Environmental Protection 140:330–38. doi:10.1016/j.psep.2020.05.007.
  • Xu, Q., S. Q. Yang, Z. Q. Tang, J. W. Cai, Y. Zhong, and B. Z. Zhou. 2018. Free radical and functional group reaction and index gas CO emission during coal spontaneous combustion. Combustion Science and Technology 190 (5):834–48. doi:10.1080/00102202.2017.1414203.
  • Xu, Y., Y. Bu, Z. Liu, and Lv, Z. 2021. Effect of the reignition characteristics on long-flame coal by oxidization and water immersion. Environmental Science and Pollution Research 1–13. doi:10.1007/s11356-021-13985-5.
  • Yang, Y., Z. Li, L. Si, S. Hou, Z. Li, and J. Li. 2018. Study on test method of heat release intensity and thermophysical parameters of loose coal. Fuel 229:34–43. doi:10.1016/j.fuel.2018.05.006.
  • Yuan, L., and A. Smith. 2011. CO and CO2 emissions from spontaneous heating of coal under different ventilation rates. International Journal of Coal Geology 88 (1):24–30. doi:10.1016/j.coal.2011.07.004.
  • Zhao, J., J. Deng, T. Wang, J. Song, Y. Zhang, C.-M. Shu, and Q. Zeng. 2019. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169:587–96. doi:10.1016/j.energy.2018.12.100.
  • Zhu, J., N. He, and D. Li. 2012. The relationship between oxygen consumption rate and temperature during coal spontaneous combustion. Safety Science 50 (4):842–45. doi:10.1016/j.ssci.2011.08.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.