290
Views
1
CrossRef citations to date
0
Altmetric
Research Article

High-temperature graphitization of coke and lithium storage properties of coke-based graphite

, , , &
Pages 19-36 | Received 12 Dec 2022, Accepted 09 Jan 2023, Published online: 18 Jan 2023

References

  • Biscoe, J., and B. Warren. 1942. An x‐ray study of carbon black. Journal of Applied Physics 13 (6):364–71. doi:10.1063/1.1714879.
  • Bokobza, L., J. -L. Bruneel, and M. Couzi. 2013. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chemical Physics Letters 590:153–59. doi:10.1016/j.cplett.2013.10.071.
  • Cai, W., Y. -X. Yao, G. -L. Zhu, C. Yan, L. -L. Jiang, C. He, J. -Q. Huang, and Q. Zhang. 2020. A review on energy chemistry of fast-charging anodes. Chemical Society Reviews 49 (12):3806–33. doi:10.1039/C9CS00728H.
  • Cameán, I., P. Lavela, J. L. Tirado, and A. B. García. 2010. On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel 89 (5):986–91. doi:10.1016/j.fuel.2009.06.034.
  • Davydov, V., A. Rakhmanina, V. Agafonov, B. Narymbetov, J. -P. Boudou, and H. Szwarc. 2004. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures. Carbon 42 (2):261–69. doi:10.1016/j.carbon.2003.10.026.
  • Deng, R., F. Chu, H. Yu, F. Kwofie, M. Qian, Y. Zhou, and F. Wu. 2022. Electrochemical performance of expanded graphite prepared from anthracite via a microwave method. Fuel Processing Technology 227:107100. doi:10.1016/j.fuproc.2021.107100.
  • Ding, Y., Z. P. Cano, A. Yu, J. Lu, and Z. Chen. 2019. Automotive Li-ion batteries: Current status and future perspectives. Electrochemical Energy Reviews 2 (1):1–28. doi:10.1007/s41918-018-0022-z.
  • Fan, E., L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, and F. Wu. 2020. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chemical Reviews 120 (14):7020–63. doi:10.1021/acs.chemrev.9b00535.
  • González, D., M. A. Montes-Morán, and A. B. Garcia. 2003. Graphite materials prepared from an anthracite: A structural characterization. Energy & Fuels 17 (5):1324–29. doi:10.1021/ef0300491.
  • González, D., M. A. Montes-Morán, and A. B. Garcia. 2005. Influence of inherent coal mineral matter on the structural characteristics of graphite materials prepared from anthracites. Energy & Fuels 19 (1):235–40. doi:10.1021/ef049893x.
  • González, D., M. A. Montes-Morán, I. Suárez-Ruiz, and A. B. Garcia. 2004. Structural characterization of graphite materials prepared from anthracites of different characteristics:A comparative analysis. Energy & Fuels 18 (2):365–70. doi:10.1021/ef030144+.
  • Jara, A. D., A. Betemariam, G. Woldetinsae, and J. Y. Kim. 2019. Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology 29 (5):671–89. doi:10.1016/j.ijmst.2019.04.003.
  • Lee, S. E., J. H. Kim, Y. -S. Lee, and J. S. Im. 2021. Effect of coke orientation on the electrochemical properties of lithium-ion battery anode. Journal of Applied Electrochemistry 51 (10):1407–18. doi:10.1007/s10800-021-01581-x.
  • Li, W., and Y. Zhu. 2014. Structural characteristics of coal vitrinite during pyrolysis. Energy & Fuels 28 (6):3645–54. doi:10.1021/ef500300r.
  • Mochida, I., Y. Korai, C. -H. Ku, F. Watanabe, and Y. Sakai. 2000. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon 38 (2):305–28. doi:10.1016/S0008-6223(99)00176-1.
  • Pachfule, P., D. Shinde, M. Majumder, and Q. Xu. 2016. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nature Chemistry 8 (7):718–24. doi:10.1038/NCHEM.2515.
  • Permana, A. K., C. R. Ward, Z. Li, and L. W. Gurba. 2013. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. International Journal of Coal Geology 116:185–207. doi:10.1016/j.coal.2013.03.001.
  • Qiu, T., J. -G. Yang, and X. -J. Bai. 2020a. Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite. International Journal of Minerals, Metallurgy and Materials 27 (2):162–72. doi:10.1007/s12613-019-1859-9.
  • Qiu, T., J. -G. Yang, and X. -J. Bai. 2020b. Preparation of coal-based graphite with different microstructures by adjusting the content of ash and volatile matter in raw coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (15):1874–81. doi:10.1080/15567036.2019.1604900.
  • Qiu, T., Z. Yu, W. Xie, Y. He, H. Wang, and T. Zhang. 2022. Preparation of onion-like synthetic graphite with a hierarchical pore structure from anthracite and its electrochemical properties as the anode material of lithium-ion batteries. Energy & Fuels 36 (15):8256–66. doi:10.1021/acs.energyfuels.2c01892.
  • Ru, H., K. Xiang, W. Zhou, Y. Zhu, X. S. Zhao, and H. Chen. 2016. Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochimica acta 222:551–60. doi:10.1016/j.electacta.2016.10.202.
  • Shi, M., C. Song, Z. Tai, K. Zou, Y. Duan, X. Dai, J. Sun, Y. Chen, and Y. Liu. 2021. Coal-derived synthetic graphite with high specific capacity and excellent cyclic stability as anode material for lithium-ion batteries. Fuel 292:120250. doi:10.1016/j.fuel.2021.120250.
  • Shi, J. L., D. D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X. D. Zhang, Y. X. Yin, X. Q. Yang, Y. G. Guo, et al. 2018. High‐capacity cathode material with high voltage for Li‐ion batteries. Advanced Materials 30 (9):1705575. doi:10.1002/adma.201705575.
  • Taguchi, K., M. Okada, H. Morota, H. Komiya, S. Shiota, M. Shirakawa, and Y. Nishi. 2013. Relationships between real density and XRD parameters during the graphitization of cokes. Carbon 52:621. doi:10.1016/j.carbon.2012.09.041.
  • Tian, Y., G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, et al. 2020. Promises and challenges of next-generation “Beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chemical Reviews 121 (3):1623–69. doi:10.1021/acs.chemrev.0c00767.
  • Wang, R., G. Lu, H. Zhuang, and J. Yu. 2017. Synergistic catalytic effect of light rare earth element and other additives on the degree of graphitization and properties of graphite. Journal of Materials Science 52 (2):663–73. doi:10.1007/s10853-016-0359-9.
  • Wang, L., T. Qiu, Z. Guo, X. Shen, J. Yang, and Y. Wang. 2020. Changes and migration of coal-derived minerals on the graphitization process of anthracite. ACS Omega 6 (1):180–87. doi:10.1021/acsomega.0c04120.
  • Wang, Y., S. Serrano, and J. J. Santiago-Aviles. 2003. Raman characterization of carbon nanofibers prepared using electrospinning. Synthetic Metals 138 (3):423–27. doi:10.1016/S0379-6779(02)00472-1.
  • Wang, T., Y. Wang, G. Cheng, C. Ma, X. Liu, J. Wang, W. Qiao, and L. Ling. 2020. Catalytic graphitization of anthracite as an anode for lithium-ion batteries. Energy & Fuels 34 (7):8911–18. doi:10.1021/acs.energyfuels.0c00995.
  • Wang, L., Z. Yao, Z. Guo, X. Shen, Z. Li, Z. Zhou, Y. Wang, and J. -G. Yang. 2022. Effects of solvent extraction on the microstructure of bituminous coal-based graphite. Carbon Letters 32 (3):741–49. doi:10.1007/s42823-021-00290-x.
  • Wu, X., X. Yang, F. Zhang, L. Cai, L. Zhang, and Z. Wen. 2017. Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries. Ceramics International 43 (12):9458–64. doi:10.1016/j.ceramint.2017.04.123.
  • Xing, B., C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen, G. Yi, L. Chen, and J. Yu. 2018. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Processing Technology 172:162–71. doi:10.1016/j.fuproc.2017.12.018.
  • Yuan, G., Z. Jin, X. Zuo, Z. Xue, F. Yan, Z. Dong, Y. Cong, and X. Li. 2018. Effect of carbonaceous precursors on the structure of mesophase pitches and their derived cokes. Energy & Fuels 32 (8):8329–39. doi:10.1021/acs.energyfuels.8b01824.
  • Zeng, X., D. Liu, S. Wang, S. Liu, X. Cai, L. Zhang, R. Zhao, B. Li, and F. Kang. 2020. In situ observation of interface evolution on a graphite anode by scanning electrochemical microscopy. ACS Applied Materials & Interfaces 12 (33):37047–53. doi:10.1021/acsami.0c07250.
  • Zeng, H., B. Xing, Y. Cao, B. Xu, L. Hou, H. Guo, S. Cheng, G. Huang, C. Zhang, and Q. Sun. 2022. Insight into the microstructural evolution of anthracite during carbonization-graphitization process from the perspective of materialization. International Journal of Mining Science and Technology 32:1397–406. doi:10.1016/j.ijmst.2022.06.009.
  • Zhu, Z., H. Zuo, S. Li, J. Tu, W. Guan, W. -L. Song, J. Zhao, D. Tian, and S. Jiao. 2019. A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage. Journal of Materials Chemistry A 7 (13):7533–40. doi:10.1039/C8TA12412D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.