116
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of nanobubbles on flotation of El-Maghara coal

, &
Pages 574-587 | Received 29 Mar 2023, Accepted 08 May 2023, Published online: 11 May 2023

References

  • Ahmadi, R., D. A. Khodadadi, M. Abdollahy, and M. Fan. 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology 24 (4):559–66. doi:10.1016/J.IJMST.2014.05.021.
  • Ahmed, A. S. 2013a. Cavitation nanobubble enhanced flotation process for more efficient coal recovery. Theses and Dissertations–Mining Engineering. https://uknowledge.uky.edu/mng_etds/8.
  • Ahmed, M. M. 2013b. Discrimination of different models in the flotation of Maghara coal. Transactions of the Institutions of Mining and Metallurgy: Section C; Ineral Processing and Extractive Metallurgy 113 (2):113(2. doi:10.1179/037195504225006074.
  • Azevedo, A., R. Etchepare, S. Calgaroto, and J. Rubio. 2016. Aqueous dispersions of nanobubbles: Generation, properties and features. Minerals Engineering 94:29–37. doi:10.1016/J.MINENG.2016.05.001.
  • Calgaroto, S., A. Azevedo, and J. Rubio. 2015. Flotation of quartz particles assisted by nanobubbles. International Journal of Mineral Processing 137:64–70. doi:10.1016/J.MINPRO.2015.02.010.
  • Calgaroto, S., K. Q. Wilberg, and J. Rubio. 2014. On the nanobubbles interfacial properties and future applications in flotation. Minerals Engineering 60:33–40. doi:10.1016/J.MINENG.2014.02.002.
  • Ding, S., Y. Xing, X. Zheng, Y. Zhang, Y. Cao, and X. Gui. 2020. New insights into the role of surface nanobubbles in bubble-particle detachment. Langmuir 36 (16):4339–46. doi:10.1021/acs.langmuir.0c00359.
  • Knüpfer, P., L. Ditscherlein, and U. A. Peuker. 2017. Nanobubble enhanced agglomeration of hydrophobic powders. Colloids and Surfaces A, Physicochemical and Engineering Aspects 530:117–23. doi:10.1016/J.COLSURFA.2017.07.056.
  • Kumar, D., and D. Kumar. 2018. Sustainable management of coal preparation. Sustainable Management of Coal Preparation 1–454. doi:10.1016/C2016-0-01854-5.
  • Ma, F., D. Tao, and Y. Tao. 2019. Effects of nanobubbles in column flotation of Chinese sub-bituminous coal. International Journal of Coal Preparation & Utilization 42 (4):1126–42. doi:10.1080/19392699.2019.1692340.
  • Ma, F., P. Zhang, D. Tao, F. Ma, P. Zhang, and D. Tao. 2022. Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review. International Journal of Minerals, Metallurgy & Materials 29 (4):727–38. doi:10.1007/S12613-022-2450-3.
  • Mostafa, A., W. M. Metwally, M. Fathy, G. Farghaly, A. M. Ramadan, A. M. Saleh, and M. R. Moharam. 2017. Flotation and leaching studies on processing of El-Magharah Coal, Sinai, Egypt. Journal of Multidisciplinary Engineering Science and Technolog 4 (8):7829–36.
  • Ramadan, A. M., A. M. Saleh, and M. R. Moharam. 2017. Waste treatment of El-Maghara coal washing plant by flotation for beneficial reuse of its constituents in industry. Mineral Processing on the Verge of the 21st Century 697–701. doi:10.1201/9780203747117-122.
  • Ramudzwagi, M., N. Tshiongo-Makgwe, and W. Nheta. 2020. Recent developments in beneficiation of fine and ultra-fine coal -review paper. Journal of Cleaner Production 276:122693. doi:10.1016/J.JCLEPRO.2020.122693.
  • Sobhy, A., and D. Tao. 2013a. High-efficiency nanobubble coal flotation. International Journal of Coal Preparation & Utilization 33 (5):242–56. doi:10.1080/19392699.2013.810623.
  • Sobhy, A., and D. Tao. 2013b. Nanobubble column flotation of fine coal particles and associated fundamentals. International Journal of Mineral Processing 124:109–16. doi:10.1016/J.MINPRO.2013.04.016.
  • Sobhy, A., and D. Tao. 2018. Effects of nanobubbles on froth stability in flotation column. International Journal of Coal Preparation & Utilization 39 (4):183–98. doi:10.1080/19392699.2018.1459582.
  • Sobhy, A., Z. Wu, and D. Tao. 2021. Statistical analysis and optimization of reverse anionic hematite flotation integrated with nanobubbles. Minerals Engineering 163:106799. doi:10.1016/J.MINENG.2021.106799.
  • Tao, D. 2022. Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review. Minerals Engineering 183:107554. doi:10.1016/J.MINENG.2022.107554.
  • Tao, D., and A. Sobhy. 2019. Nanobubble effects on hydrodynamic interactions between particles and bubbles. Powder Technology 346:385–95. doi:10.1016/J.POWTEC.2019.02.024.
  • Tao, D., Z. Wu, and A. Sobhy. 2021. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. Powder Technology 379:12–25. doi:10.1016/J.POWTEC.2020.10.040.
  • Zhang, X., Q. Wang, Z. Wu, D. Tao, X. Zhang, Q. Wang, Z. Wu, and D. Tao. 2020. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. International Journal of Minerals, Metallurgy & Materials 27 (2):152–61. doi:10.1007/S12613-019-1936-0.
  • Zhou, Z. A., Z. Xu, J. A. Finch, H. Hu, and S. R. Rao. 1997. Role of hydrodynamic cavitation in fine particle flotation. International Journal of Mineral Processing 51 (1–4):139–49. doi:10.1016/S0301-7516(97)00026-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.