87
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study of multi-scale thermal effects and mechanism of oxidized coal spontaneous combustion by correlation analysis

ORCID Icon, , , &
Pages 588-603 | Received 15 Mar 2023, Accepted 08 May 2023, Published online: 11 May 2023

References

  • Arisoy, A., and B. Beamish. 2015. Reaction kinetics of coal oxidation at low temperatures. Fuel 159:412–17. doi:10.1016/j.fuel.2015.06.054.
  • Baset, Z. H., R. J. Pancirov, and T. R. Ashe. 1980. Organic compounds in coal: Structure and origins. Physics and Chemistry of the Earth 12:619–30. doi:10.1016/0079-1946(79)90143-5.
  • Behera, D., B. K. Nandi, and S. Bhattacharya. 2020. Variations in combustion properties of coal with average relative density and functional groups identified by FTIR analysis. International Journal of Coal Preparation & Utilization 42 (6):1–17. doi:10.1080/19392699.2020.1755661.
  • Berthomieu, C., and R. Hienerwadel. 2009. Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research 101 (2):157–70. doi:10.1007/s11120-009-9439-x.
  • Borchardt, H. J., and F. Daniels. 1957. The application of differential thermal analysis to the study of reaction kinetics1. Journal of the American Chemical Society 79 (1):41–46. doi:10.1021/ja01558a009.
  • Cao, N., G. Wang, Y. Liang, and S. Hussain. 2021. Study on the Microscopic Mechanism of Spontaneous Combustion and Oxidation Kinetics of Water-Leached Coal. Coal Journal of Chemistry 2021:1–15. doi:https://doi.org/10.1155/2021/5564290.
  • Gao, D., L. Guo, F. Wang, and Z. Zhang. 2021. Study on the spontaneous combustion tendency of coal based on grey relational and multiple regression analysis. ACS Omega 6 (10):6736–46. doi:10.1021/acsomega.0c05736.
  • Jo, W., H. Choi, S. Kim, J. Yoo, D. Chun, Y. Rhim …, J. Lim, S. Lee. 2015. Changes in spontaneous combustion characteristics of low-rank coal through pre-oxidation at low temperatures. The Korean Journal of Chemical Engineering 32 (2):255–60. doi:https://doi.org/10.1007/s11814-014-0228-7.
  • Jou, Y. J., C. C. L. Huang, and H. J. Cho. 2014. A VIF-based optimization model to alleviate collinearity problems in multiple linear regression. Computational Statistics 29 (6):1515–41. doi:10.1007/s00180-014-0504-3.
  • Kaljuvee, T., M. Keelman, A. Trikkel, and V. Petkova. 2013. TG-FTIR/MS analysis of thermal and kinetic characteristics of some coal samples. Journal of Thermal Analysis and Calorimetry 113 (3):1063–71. doi:https://doi.org/10.1007/s10973-013-2957-y.
  • Kuenzer, C., and G. B. Stracher. 2012. Geomorphology of coal seam fires. Geomorphology 138 (1):209–22. doi:10.1016/j.geomorph.2011.09.004.
  • Kuenzer, C., J. Zhang, A. Tetzlaff, P. Van Dijk, S. Voigt, H. Mehl, and W. Wagner. 2007. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Applied Geography 27 (1):42–62. doi:10.1016/j.apgeog.2006.09.007.
  • Lei, C., J. Deng, K. Cao, L. Ma, Y. Xiao, and L. Ren. 2018. A random forest approach for predicting coal spontaneous combustion. Fuel 223:63–73. doi:10.1016/j.fuel.2018.03.005.
  • Lothenbach, B., P. Durdzinski, and K. De Weerdt. 2016. A Practical Guide to Microstructural Analysis of Cementitious Materials, 1st Edition, pp. 177–211. Boca Raton: CRC Press. doi:10.1201/b19074.
  • Lü, H. F., J. Deng, D. J. Li, F. Xu, Y. Xiao, and C. M. Shu. 2021. Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process. Energy 227:120431. doi:10.1016/j.energy.2021.120431.
  • Meng, D., C. Yue, T. Wang, and X. Chen. 2021. Evolution of carbon structure and functional group during Shenmu lump coal pyrolysis. Fuel 287:119538. doi:10.1016/j.fuel.2020.119538.
  • Niu, H., Y. Yang, Y. Bu, and S. Li. 2021. Study on spontaneous combustion characteristics of coal samples with different pre-oxidized temperatures in secondary oxidation process. Combustion Science and Technology 195 (8):1–14. doi:10.1080/00102202.2021.2004405.
  • Onifade, M., B. Genc, A. R. Gbadamosi, A. Morgan, and T. Ngoepe. 2021. Influence of antioxidants on spontaneous combustion and coal properties. Process Safety & Environmental Protection 148:1019–32. doi:10.1016/j.psep.2021.02.017.
  • Qi, X., L. Chen, H. Xin, Y. Ji, C. Bai, R. Song …, H. Xue, F. Liu. 2018. Reaction mechanism and thermodynamic properties of aliphatic hydrocarbon groups during coal self-heating. Energy & Fuels 32 (10):10469–77. doi:https://doi.org/10.1021/acs.energyfuels.8b02165.
  • Wang, K., T. Han, J. Deng, and Y. Zhang. 2022. Comparison of combustion characteristics and kinetics of Jurassic and Carboniferous-Permian coals in China. Energy 254:124315. doi:10.1016/j.energy.2022.124315.
  • Wang, K., Y. He, H. Fan, and B. Shang. 2021. Study of the coal secondary spontaneous combustion behavior under different pre-heating oxygen concentrations. Journal of Thermal Analysis and Calorimetry 146 (2):681–88. doi:https://doi.org/10.1007/s10973-020-10036-y.
  • Wang, K., L. Hu, J. Deng, and Y. Zhang. 2023. Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time. Energy 262:125397. doi:10.1016/j.energy.2022.125397.
  • Wang, K., L. Hu, W. Sun, and H. Fan. 2022. Influences of the pre-oxidation time on coal secondary spontaneous combustion behaviors by temperature-programmed technique. International Journal of Coal Preparation & Utilization (1):1–13. doi:10.1080/19392699.2022.2031177.
  • Wang, G., Q. Liu, L. Sun, X. Song, W. Du, D. Yan, and Y. Wang. 2018. Secondary spontaneous combustion characteristics of coal based on programmed temperature experiments. Journal of Energy Resources Technology 140 (8). doi:10.1115/1.4039659.
  • Wang, C., Y. Yang, Y. T. Tsai, J. Deng, and C. M. Shu. 2016. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. Journal of Thermal Analysis and Calorimetry 126 (3):1591–602. doi:10.1007/s10973-016-5685-2.
  • Worasuwannarak, N., H. Nakagawa, and K. Miura. 2002. Effect of pre-oxidation at low temperature on the carbonization behavior of coal. Fuel 81 (11–12):1477–84. doi:10.1016/S0016-2361(02)00083-2.
  • Xiao, Y., S. J. Ren, J. Deng, and C. M. Shu. 2018. Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion. Fuel 227:325–33. doi:10.1016/j.fuel.2018.04.070.
  • Xie, Z., Y. Zhang, and C. Jin. 2012. Prediction of coal spontaneous combustion in goaf based on the BP neural network. Procedia Engineering 43:88–92. doi:10.1016/j.proeng.2012.08.016.
  • Xie, X., Y. Zhao, P. Qiu, D. Lin, J. Qian, H. Hou, and J. Pei. 2018. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks. Fuel 216:521–30. doi:10.1016/j.fuel.2017.12.049.
  • Xi, X., Q. Shi, S. Jiang, W. Zhang, K. Wang, and W. Zhengyan. 2020. Study on the effect of ionic liquids on coal spontaneous combustion characteristic by microstructure and thermodynamic. Process Safety & Environmental Protection 140:190–98. doi:10.1016/j.psep.2020.05.003.
  • Xu, T., X. T. Shen, J. Y. Chen, and Z. H. Chen. 2019. Distribution of the functional groups in various coals with different spontaneous propensity. International Journal of Coal Preparation & Utilization 40 (6):349–58. doi:10.1080/19392699.2019.1599365.
  • Xu, Q., S. Yang, J. Cai, B. Zhou, and Y. Xin. 2018. Risk forecasting for spontaneous combustion of coals at different ranks due to free radicals and functional groups reaction. Process Safety & Environmental Protection 118:195–202. doi:10.1016/j.psep.2018.06.040.
  • Xu, Q., S. Yang, Z. Tang, J. Cai, Y. Zhong, and B. Zhou. 2018. Free radical and functional group reaction and index gas CO emission during coal spontaneous combustion. Combustion Science and Technology 190 (5):834–48. doi:10.1080/00102202.2017.1414203.
  • Xu, Q., S. Yang, W. Yang, Z. Tang, X. Hu, W. Song, and B. Zhou. 2020. Micro-structure of crushed coal with different metamorphic degrees and its low-temperature oxidation. Process Safety & Environmental Protection 140:330–38. doi:10.1016/j.psep.2020.05.007.
  • Yang, F., Y. Lai, and Y. Song. 2019. Determination of the influence of pyrite on coal spontaneous combustion by thermodynamics analysis. Process Safety & Environmental Protection 129:163–67. doi:10.1016/j.psep.2019.06.023.
  • Yang, D., W. G. Li, and M. Hongcui. 2012. Research on the influence of oxygen-containing functional group and gas emission by coal seams. Energy Procedia 17:1901–06. doi:https://doi.org/10.1016/j.egypro.2012.02.330.
  • Yong, S., W. Shugang, W. Lu, Y. J. Cao, and J. Li. 2019. Coal spontaneous combustion characteristics based on constant temperature difference guidance method. Process Safety & Environmental Protection 131:223–34. doi:10.1016/j.psep.2019.09.013.
  • Zhao, J. Y., Y. L. Zhang, J. J. Song, T. H. Zhang, H. Q. Ming, S. P. Lu, Deng, J. …, and C. M. Shu. 2022. Microstructure of coal spontaneous combustion in low-oxygen atmospheres at characteristic temperatures. Fuel 309:122132. doi:10.1016/j.fuel.2021.122132.
  • Zhong, K. Q., Y. Xiao, X. Zhao, L. Yin, C. M. Shu, and Y. Tian. 2021. Predictive ability of four statistical models for determining the influence of coal thermophysical properties during the initial phase of coal spontaneous combustion. Fuel 292:120348. doi:10.1016/j.fuel.2021.120348.
  • Zhou, B., S. Yang, X. Jiang, J. Cai, Q. Xu, W. Song, and Q. Zhou. 2021. The reaction of free radicals and functional groups during coal oxidation at low temperature under different oxygen concentrations. Process Safety & Environmental Protection 150:148–56. doi:10.1016/j.psep.2021.04.007.
  • Zhou, C., Y. Zhang, J. Wang, S. Xue, J. Wu, and L. Chang. 2017. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal. International Journal of Coal Geology 171:212–22. doi:10.1016/j.coal.2017.01.013.
  • Zhuo, H., B. Qin, Q. Qin, and Z. Su. 2019. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams. Process Safety & Environmental Protection 131:246–54. doi:10.1016/j.psep.2019.09.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.