104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation and mechanism of ultrasound-assisted electrochemical desulfurization using citric acid as the electrolyte solution

, , , , &
Pages 1054-1071 | Received 05 Jul 2023, Accepted 01 Aug 2023, Published online: 10 Aug 2023

References

  • Alam, H. G., A. Z. Moghaddam, and M. R. Omidkhah. 2009. The influence of process parameters on desulfurization of Mezino coal by HNO3/HCl leaching. Fuel Processing Technology 90 (1):1–7. doi:10.1016/j.fuproc.2008.06.009.
  • Arce, E. M., and I. González. 2002. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution. International Journal of Mineral Processing 67 (1–4):17–28. doi:10.1016/S0301-7516(02)00003-0.
  • Benson, S. W. 1978. Thermochemistry and kinetics of sulfur-containing molecules and radicals. Chemical Reviews 78 (1):23–35. doi:10.1021/cr60311a003.
  • Bisaria, K., S. Sinha, R. Singh, and H. M. Iqbal. 2021. Recent advances in structural modifications of photo-catalysts for organic pollutants degradation–A comprehensive review. Chemosphere 131263:131263. doi:10.1016/j.chemosphere.2021.131263.
  • Cao, D., X. Xu, and S. Jiang. 2021. Ultrasound-electrochemistry enhanced flotation and desulphurization for fine coal. Separation and Purification Technology 258:117968. doi:10.1016/j.seppur.2020.117968.
  • Carrillo-Pedroza, F. R., A. Dávalos Sánchez, M. Soria-Aguilar, and E. T. Pecina Trevino. 2009. Coal desulfurization in oxidative acid media using hydrogen peroxide and ozone: A kinetic and statistical approach. Energy & Fuels 23 (7):3703–10. doi:10.1021/ef900253g.
  • Chanikya, P., P. V. Nidheesh, D. S. Babu, A. Gopinath, and M. S. Kumar. 2021. Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Separation and Purification Technology 254:117570. doi:10.1016/j.seppur.2020.117570.
  • CHEN, Z. D., X. Z. GONG, W. A. N. G. Zhi, Y. G. WANG, S. Zhang, and D. P. XU. 2013. Sulfur removal from ionic liquid-assisted coal water slurry electrolysis in KNO3 system. Journal of Fuel Chemistry & Technology 41 (8):928–36. doi:10.1016/S1872-5813(13)60040-7.
  • Chen, S., W. Zhou, Y. Ding, G. Zhao, and J. Gao. 2021. Fe3±mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal. Energy 220:119677. doi:10.1016/j.energy.2020.119677.
  • Furusawa, A., K. Hine, Y. Hayashi, and H. Takizawa. 2019. Formation of particle of bismuth–indium alloys and particle diameter by ultrasonic cavitation. Ultrasonics Sonochemistry 50:322–30. doi:10.1016/j.ultsonch.2018.09.034.
  • Ge, L., X. Gong, Z. Wang, L. Zhao, Y. Wang, and M. Wang. 2016. Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production. Energy 96:372–82. doi:10.1016/j.energy.2015.12.077.
  • Gong, X., Y. Wu, Z. Wang, M. Wang, and Z. Guo. 2014. Changes of total organic carbon and kinetics of ultrasonic-assisted coal water slurry electrolysis in NaOH system. Fuel Processing Technology 119:166–72. doi:10.1016/j.fuproc.2013.10.029.
  • Hannun, R. M., and A. H. A. Razzaq. 2022, March. Air pollution resulted from coal, oil and gas firing in thermal power plants and treatment: A review. IOP Conference Series: Earth and Environmental Science 1002 (1):12008. IOP Publishing. doi:10.1088/1755-1315/1002/1/012008.
  • Li, W., and E. H. Cho. 2005. Coal desulfurization with sodium hypochlorite. Energy & Fuels 19 (2):499–507. doi:10.1021/ef0400767.
  • Li, G., Y. Li, and J. He. 2019. Intensifying effects of zinc oxide wet flue gas desulfurization process with citric acid. Journal of Environmental Chemical Engineering 7 (1):102831. doi:10.1016/j.jece.2018.102831.
  • Li, F., X.-H. Li, R.-S. Yao, L.-P. Chang, and Q.-G. Zhang. 2012. A kinetics study on the gasification of poor quality coal, energy sources, part A: Recovery. Utilization, and Environmental Effects 34 (21):1943–57. doi:10.1080/15567036.2010.483456.
  • Lin, Y., L. Feng, X. Li, Y. Chen, G. Yin, and W. Zhou. 2020. Study on ultrasound-assisted oxidative desulfurization for crude oil. Ultrasonics Sonochemistry 63:104946. doi:10.1016/j.ultsonch.2019.104946.
  • Liu, J., Z. Wang, Z. Qiao, W. Chen, L. Zheng, and J. Zhou. 2020. Evaluation on the microwave-assisted chemical desulfurization for organic sulfur removal. Journal of Cleaner Production 267:121878. doi:10.1016/j.jclepro.2020.121878.
  • Matzenbacher, C. A., A. L. H. Garcia, M. S. Dos Santos, C. C. Nicolau, S. Premoli, D. S. Corrêa, and J. da Silva, L. Niekraszewicz, J. F. Dias, T. V. Delgado. 2017. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. Journal of Hazardous Materials 324:781–88. doi:10.1016/j.jhazmat.2016.11.062.
  • More, N. S., and P. R. Gogate. 2019. Intensified approach for desulfurization of simulated fuel containing thiophene based on ultrasonic flow cell and oxidizing agents. Ultrasonics Sonochemistry 51:58–68. doi:10.1016/j.ultsonch.2018.10.019.
  • Murthy, S., M. Shivaswamy, S. Mahesh, and S. Hanumanthappa. 2019. Simultaneous removal of arsenite and fluoride from groundwater using batch electrochemical coagulation process-role of aluminum with iron electrodes. Oriental Journal of Chemistry 35 (1):85–97. doi:10.13005/ojc/350110.
  • Nandy, S., E. Fortunato, and R. Martins. 2022. Green economy and waste management: An inevitable plan for materials science. Progress in Natural Science: Materials International 32 (1):1–9. doi:10.1016/j.pnsc.2022.01.001.
  • Palmer, S. R., E. J. Hippo, and X. A. Dorai. 1995. Selective oxidation pretreatments for the enhanced desulfurization of coal. Fuel 74 (2):193–200. doi:10.1016/0016-2361(95)92654-O.
  • Pattanaik, A., L. B. Sukla, D. Pradhan, and D. Samal. 2020. Microbial mechanism of metal sulfide dissolution. Material Today: Proceedings 30 (2): 326–331. doi:10.1016/j.matpr.2020.01.615.
  • Qiu, S., T. Lei, J. Wu, and S. Bi. 2021. Energy demand and supply planning of China through 2060. Energy 234:121193. doi:10.1016/j.energy.2021.121193.
  • Saikia, B. K., A. C. Dalmora, R. Choudhury, T. Das, S. R. Taffarel, and L. F. Silva. 2016. Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40 kHz) in presence of H2O2. Ultrasonics Sonochemistry 32:147–57. doi:10.1016/j.ultsonch.2016.03.007.
  • Saikia, B. K., A. M. Dutta, L. Saikia, S. Ahmed, and B. P. Baruah. 2014. Ultrasonic assisted cleaning of high sulphur Indian coals in water and mixed alkali. Fuel Processing Technology 123:107–13. doi:10.1016/j.fuproc.2014.01.037.
  • Sheng, M., X. Zhang, R. Zhang, Y. Zhang, C. Peng, and S. Tian. 2020. Enhanced erosion on sedimentary rock by adding abrasive nanoparticles in ultrasonic cavitation. Applied Nanoscience 10:1–12. doi:10.1007/s13204-020-01270-9.
  • Tang, L., H. Fan, J. Guo, W. Zeng, and X. Tao. 2018. Investigation on the mechanism of coal desulfurization by ultrasonic with peroxyacetic acid. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 40 (8):999–1009. doi:10.1080/15567036.2018.1468512.
  • Wang, L., X. Wen, Z. Liu, Z. Liu, Y. Zhang, X. Lu, H. Zhou, and Y. Xu. 2021. Coal desulfurization by photocatalytic oxidation in the presence of [HO2MMim][HSO4] and H2O2. Fuel 306:121754. doi:10.1016/j.fuel.2021.121754.
  • Xia, W. 2018. A novel and effective method for removing organic sulfur from low rank coal. Journal of Cleaner Production 172:2708–10. doi:10.1016/j.jclepro.2017.11.141.
  • Xin, H. H., D. M. Wang, X. Y. Qi, G. S. Qi, and G. L. Dou. 2014. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Processing Technology 118:287–95. doi:10.1016/j.fuproc.2013.09.011.
  • Yu, G., C. Zhai, L. Qin, Z. Tang, and J. Xu. 2018. Changes to coal pores by ultrasonic wave excitation of different powers. Journal of China University of Mining and Technology 47 (2):264–70 and 322.
  • Zhang, J., T. Zhang, J. Ma, Z. Wang, J. Liu, and X. Gong. 2021. ORR and OER of Co–N codoped carbon-based electrocatalysts enhanced by boundary layer oxygen molecules transfer. Carbon 172:556–68. doi:10.1016/j.carbon.2020.10.075.
  • Zhang, B., G. Zhu, B. Lv, and G. Yan. 2018. A novel and effective method for coal slime reduction of thermal coal processing. Journal of Cleaner Production 198:19–23. doi:10.1016/j.jclepro.2018.06.306.
  • Zhao, Y., Z. Cui, L. Wu, and W. Gao. 2019. The green behavioral effect of clean coal technology on China’s power generation industry. Science of the Total Environment 675:286–94. doi:10.1016/j.scitotenv.2019.04.132.
  • Zhao, Y., L. Jia, K. Liu, P. Gao, H. Ge, and L. Fu. 2016. Inhibition of calcium sulfate scale by poly (citric acid). Desalination 392:1–7. doi:10.1016/j.desal.2016.04.010.
  • Zhao, D., and B. Sun. 1986. Atmospheric pollution from coal combustion in China. Journal of the Air Pollution Control Association 36 (4):371–74. doi:10.1080/00022470.1986.10466074.
  • Zhao, J., Y. Zhang, H. Wang, and Q. Chen. 2002. Studies on the removal of organic sulfur from coal by ultrasonic Reinforced tetrachloroethylene solvent. Journal of Fuel Chemistry 30: 234–38. doi:10.3969/j.issn.0253-2409.2002.03.009.
  • Zhou, A., J. Hu, and K. Wang. 2020. Carbon emission assessment and control measures for coal mining in China. Environmental Earth Sciences 79 (19):1–15. doi:10.1007/s12665-020-09189-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.