1,007
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Protein evolution revisited

&
Pages 403-416 | Received 30 May 2018, Accepted 29 Jul 2018, Published online: 04 Sep 2018

References

  • Almén MS, Lamichhaney S, Berglund J, Grant BR, Grant PR, Webster MT, Andersson L. 2016. Adaptive radiation of Darwin’s finches revisited using whole genome sequencing. BioEssays. 38(1):14–20.
  • Baalsrud HT, Tørresen OK, Hongrø Solbakken M, Salzburger W, Hanel R, Jakobsen KS, Jentoft S. 2018. De novo gene evolution of antifreeze glycoproteins in codfishes revealed by whole genome sequence data. Mol Biol Evol. 35:593–606.
  • Baardsnes J, Davies PL. 2001. Sialic acid synthase: the origin of fish type III antifreeze protein? Trends Biochem Sci. 26:468–469.
  • Baardsnes J, Kondejewski LH, Hodges RS, Chao H, Kay C, Davies PL. 1999. New ice-binding face for type I antifreeze protein. FEBS Lett. 463:87–91.
  • Baardsnes J, Kuiper MJ, Davies PL. 2003. Antifreeze protein dimer: when two ice-binding faces are better than one. J Biol Chem. 278:38942–38947.
  • Baase WA, Eriksson AE, Zhang XJ, Heinz DW, Sauer U, Blaber M, Baldwin EP, Wozniak JA, Matthews BW. 1992. Dissection of protein structure and folding by directed mutagenesis. Faraday Discuss. 93:173–181.
  • Baguisi A, Arav A, Crosby TF, Roche JF, Boland MP. 1997. Hypothermic storage of sheep embryos with antifreeze proteins: development in vitro and in vivo. Theriogenology. 48:1017–1024.
  • Bar Dolev M, Braslavsky I, Davies PL. 2016. Ice-binding proteins and their function. Annu Rev Biochem. 85:515–542.
  • Basu K, Graham LA, Campbell RL, Davies PL. 2015. Flies expand the repertoire of protein structures that bind ice. Proc Natl Acad Sci USA. 112(3):737–742.
  • Bredow M, Walker VK. 2017. Ice-binding proteins in plants. Front Plant Sci. 8:2153.
  • Chakrabartty A, Ananthanarayanan VS, Hew CL. 1989. Structure-function relationships in a winter flounder antifreeze polypeptide. I. Stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions. J Biol Chem. 264:11307–11312.
  • Chao H, Davies PL. 1992. Amino acid sequence of the unique protamine from yellow perch. FEBS Lett. 299:166–168.
  • Chao H, Hodges RS, Kay CM, Gauthier SY, Davies PL. 1996. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze. Protein Sci. 5:1150–1156.
  • Chao H, Sönnichsen FD, DeLuca CI, Sykes BD, Davies PL. 1994. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice. Protein Sci. 3:1760–1769.
  • Chen L, DeVries AL, Cheng CH. 1997. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA. 94:3811–3816.
  • Cheng CH. 1998. Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev. 8:715–720.
  • Cheng CH, Cziko PA, Evans CW. 2006. Nonhepatic origin of notothenioid antifreeze reveals pancreatic synthesis as common mechanism in polar fish freezing avoidance. Proc Natl Acad Sci USA. 103:10491–10496.
  • Collares T, Campos VF, Seixas FK, Cavalcanti PV, Dellagostin OA, Moreira HL, Deschamps JC. 2010. Transgene transmission in South American catfish (Rhamdia quelen) larvae by sperm-mediated gene transfer. J Biosci. 35:39–47.
  • Cziko PA, DeVries AL, Evans CW, Cheng CH. 2014. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc Natl Acad Sci USA. 111:14583–14588.
  • Davies PL, Dixon GH, Ferrier LN, Gedamu L, Iatrou K. 1976. The structure and function of protamine mRNA from developing trout testis. Prog Nucleic Acid Res Mol Biol. 19:135–155.
  • Davies PL, Hew CL. 1980. Isolation and characterization of the antifreeze protein messenger RNA from the winter flounder. J Biol Chem. 255:8729–8734.
  • Davies PL, Hew CL. 1990. Biochemistry of fish antifreeze proteins. FASEB J. 4:2460–2468.
  • Davies PL, Roach AH, Hew CL. 1982. DNA sequence coding for an antifreeze protein precursor from winter flounder. Proc Natl Acad Sci USA. 79:335–339.
  • Deng C, Cheng CH, Ye H, He X, Chen L. 2010. Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci USA. 107:21593–21598.
  • Deng G, Andrews DW, Laursen RA. 1997. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Lett. 402:17–20.
  • Deng G, Laursen RA. 1998. Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochim Biophys Acta. 1388:305–314.
  • DeVries AL. 1971. Glycoproteins as biological antifreeze agents in Antarctic fishes. Science. 172:1152–1155.
  • DeVries AL, Komatsu SK, Feeney RE. 1970. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem. 245:2901–2908.
  • DeVries AL, Lin Y. 1977. Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim Biophys Acta. 495:388–392.
  • DeVries AL, Wohlschlag DE. 1969. Freezing resistance in some Antarctic fishes. Science. 163:1073–1075.
  • Dixon GH. 1966. Mechanisms of protein evolution. Essays Biochem. 2:147–204.
  • Duman JG. 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol. 63:327–357.
  • Ewart KV, Fletcher GL. 1990. Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Clupe harengus harengus). Can J Zool. 68:1652–1658.
  • Fletcher GL, Idler DR, Vaisius A, Hew CL. 1989. Hormonal regulation of antifreeze protein gene expression in winter flounder. Fish Physiol Biochem. 7:387–393.
  • Garnham CP, Campbell RL, Davies PL. 2011. Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci USA. 108:7363–7367.
  • Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL. 2008. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold. Biochem J. 411:171–180.
  • Gauthier SY, Scotter AJ, Lin FH, Baardsnes J, Fletcher GL, Davies PL. 2008. A re-evaluation of the role of type IV antifreeze protein. Cryobiology. 57:292–296.
  • Gong Z, Ewart KV, Hu Z, Fletcher GL, Hew CL. 1996. Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequences. J Biol Chem. 271:4106–4112.
  • Graham LA, Hobbs RS, Fletcher GL, Davies PL. 2013. Helical antifreeze proteins have independently evolved in fishes on four occasions. PLoS ONE. 8:e81285.
  • Graham LA, Li J, Davidson WS, Davies PL. 2012. Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes. BMC Evol Biol. 12:190.
  • Graham LA, Lougheed SC, Ewart KV, Davies PL. 2008. Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS ONE. 3:e2616.
  • Gunawan J, Simard D, Gilbert M, Lovering AL, Wakarchuk WW, Tanner ME, Strynadka NC. 2005. Structural and mechanistic analysis of sialic acid synthase NeuB from Neisseria meningitidis in complex with Mn2+, phosphoenolpyruvate, and N-acetylmannosaminitol. J Biol Chem. 280:3555–3563.
  • Guo S, Garnham CP, Whitney JC, Graham LA, Davies PL. 2012. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. PLoS ONE. 7:e48805.
  • Guo S, Stevens CA, Vance TDR, Olijve LLC, Graham LA, Campbell RL, Yazdi SR, Escobedo C, Bar-Dolev M, Yashunsky V, et al. 2017. Sci Adv. 3:e1701440.
  • Hakim A, Nguyen JB, Basu K, Zhu DF, Thakral D, Davies PL, Isaacs FJ, Modis Y, Meng W. 2013. Crystal structure of an insect antifreeze protein and its implications for ice binding. J Biol Chem. 288:12295–12304.
  • Hayward JA, Haymet AD. 2001. The ice/water interface: molecular dynamics simulations of the basal, prism, {202̄1},{202̄1}, and {21̄1̄0}{21̄1̄0} interfaces of ice Ih. J Chem Phys. 114:3713–3726.
  • Hew CL. 1978. Cell-free synthesis of cod preproinsulin. Can J Biochem. 56:791–793.
  • Hew CL, Joshi S, Wang NC, Kao MH, Ananthanarayanan VS. 1985. Structures of shorthorn sculpin antifreeze polypeptides. Eur J Biochem. 151:167–172.
  • Hew CL, Wang NC, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL. 1988. Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem. 263:12049–12055.
  • Hobbs RS, Fletcher GL. 2008. Tissue specific expression of antifreeze protein and growth hormone transgenes driven by the ocean pout (Macrozoarces americanus) antifreeze protein OP5a gene promoter in Atlantic salmon (Salmo salar). Transgenic Res. 17:33–45.
  • Holland NB, Nishimiya Y, Tsuda S, Sönnichsen FD. 2008. Two domains of RD3 antifreeze protein diffuse independently. Biochemistry. 47:5935–5941.
  • Hsiao KC, Cheng CH, Fernandes IE, Detrich HW, DeVries AL. 1990. An antifreeze glycopeptide gene from the Antarctic cod Notothenia coriiceps neglecta encodes a polyprotein of high peptide copy number. Proc Natl Acad Sci USA. 87:9265–9269.
  • Iatrou K, Dixon GH. 1978. Protamine messenger RNA: its life history during spermatogenesis in rainbow trout. Fed Proc. 37:2526–2533.
  • Ideta A, Aoyagi Y, Tsuchiya K, Nakamura Y, Hayama K, Shirasawa A, Sakaguchi K, Tominaga N, Nishimiya Y, Tsuda S. 2015. Prolonging hypothermic storage (4 C) of bovine embryos with fish antifreeze protein. J Reprod Dev. 61:1–6.
  • Izumi R, Matsushita T, Fujitani N, Naruchi K, Shimizu H, Tsuda S, Hinou H, Nishimura S. 2013. Microwave-assisted solid-phase synthesis of antifreeze glycopeptides. Chemistry. 19:3913–3920.
  • Jia Z, DeLuca CI, Chao H, Davies PL. 1996. Structural basis for the binding of a globular antifreeze protein to ice. Nature. 384:285–288.
  • Kennedy BP, Davies PL. 1980. Acid-soluble nuclear proteins of the testis during spermatogenesis in the winter flounder. Loss of the high mobility group proteins. J Biol Chem. 255:2533–2539.
  • Kennedy BP, Davies PL. 1982. Chromatin reorganization during spermatogenesis in the winter flounder. J Biol Chem. 257:11160–11165.
  • Knight CA. 2000. Structural biology. Adding to the antifreeze agenda. Nature. 406:249–251.
  • Ko TP, Robinson H, Gao YG, Cheng CH, DeVries AL, Wang AH. 2003. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-Å resolution reveals structural microheterogeneity of protein and solvation. Biophys J. 84:1228–1237.
  • Kuiper MJ, Morton CJ, Abraham SE, Gray-Weale A. 2015. The biological function of an insect antifreeze protein simulated by molecular dynamics. Elife. 4:e05142.
  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. 2001. Initial sequencing and analysis of the human genome. Nature. 409:860–921.
  • Leinala EK, Davies PL, Doucet D, Tyshenko MG, Walker VK, Jia Z. 2002. A beta-helical antifreeze protein isoform with increased activity. Structural and functional insights. J Biol Chem. 277:33349–33352.
  • Lewis JD, McParland R, Ausio J. 2004. PL-I of Spisula solidissima, a highly elongated sperm-specific histone H1. Biochemistry. 43:7766–7775.
  • Lin FH, Davies PL, Graham LA. 2011. The Thr- and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix. Biochemistry. 50:4467–4478.
  • Liou YC, Tocilj A, Davies PL, Jia Z. 2000. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 406:322–324.
  • Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew CL. 2007. Structure and evolutionary origin of Ca2+-dependent Herring type II antifreeze protein. PLoS ONE. 2:e548.
  • Low WK, Lin Q, Stathakis C, Miao M, Fletcher GL, Hew CL. 2001. Isolation and characterization of skin-type, type I antifreeze polypeptides from the longhorn sculpin, Myoxocephalus octodecemspinosus. J Biol Chem. 276:11582–11589.
  • Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE. 2016. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv. 2:e1600134.
  • Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature. 506:307–315.
  • Martínez-Páramo S, Barbosa V, Pérez-Cerezales S, Robles V, Herráez MP. 2009. Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos. Cryobiology. 58:128–133.
  • Marushige K, Dixon GH. 1971. Transformation of trout testis chromatin. J Biol Chem. 246:5799–5805.
  • Meyer K, Keil M, Naldrett M. 1999. A leucine-rich repeat protein of carrot that exhibits antifreeze activity. J FEBS Lett. 447:171–178.
  • Mok YF, Lin FH, Graham LA, Celik Y, Braslavsky I, Davies PL. 2010. Structural basis for the superior activity of the large isoform of snow flea antifreeze protein. Biochemistry. 49:2593–2603.
  • Murray HM, Hew CL, Fletcher GL. 2003. Spatial expression patterns of skin-type antifreeze protein in winter flounder (Pseudopleuronectes americanus) epidermis following metamorphosis. J Morphol. 257:78–86.
  • Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernández DA, Jones CD. 2012. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci USA. 109:3434–3439.
  • Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S. 2008. Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol. 382:734–746.
  • Nutt DR, Smith JC. 2008. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. J Am Chem Soc. 130:13066–13073.
  • Oliva R, Dixon GH. 1991. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucl Acid Res Mol Biol. 40:25–94.
  • Patil JG, Khoo HW. 1996. Nuclear internalization of foreign DNA by zebrafish spermatozoa and its enhancement by electroporation. J Exp Zool. 274:121–129.
  • Pickett MH, Hew CL, Davies PL. 1983a. Seasonal variation in the level of antifreeze protein mRNA from the winter flounder. Biochim Biophys Acta. 739:97–104.
  • Pickett MH, White BN, Davies PL. 1983b. Evidence that translational control mechanisms operate to optimize antifreeze protein production in the winter flounder. J Biol Chem. 258:14762–14765.
  • Prathalingam NS, Holt WV, Revell SG, Mirczuk S, Fleck RA, Watson PF. 2006. Impact of antifreeze proteins and antifreeze glycoproteins on bovine sperm during freeze-thaw. Theriogenology. 66:1894–1900.
  • Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Schouten S, Bendle JA, Röhl U, Tauxe L, Raine JI, et al. 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature. 488:73–77.
  • Qadeer S, Khan MA, Ansari MS, Rakha BA, Ejaz R, Husna AU, Ashiq M, Iqbal R, Ullah N, Akhter S. 2014. Evaluation of antifreeze protein III for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci. 148:26–31.
  • Raymond JA. 2011. Algal ice-binding proteins change the structure of sea ice. Proc Natl Acad Sci USA. 108:E198.
  • Raymond JA, DeVries AL. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA. 74:2589–2593.
  • Raymond JA, Kim HJ. 2012. Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS ONE. 7:e35968.
  • Raymond JA, Knight CA. 2003. Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology. 46:174–181.
  • Scher HD, Martin EE. 2006. Timing and climatic consequences of the opening of Drake Passage. Science. 312:428–430.
  • Scholander PF, Van Dam L, Kanwisher JW, Hammel HT, Gordon MS. 1957. Supercooling and osmoregulation in Arctic fish. J Cell Physiol. 49:5–24.
  • Scott GK, Fletcher GL, Davies PL. 1986. Fish antifreeze proteins: recent gene evolution. Can J Fish Aquat Sci. 43:1028–1034.
  • Scott GK, Hayes PH, Fletcher GL, Davies PL. 1988. Wolffish antifreeze protein genes are primarily organized as tandem repeats that each contain two genes in inverted orientation. Mol Cell Biol. 8:3670–3675.
  • Scott GK, Hew CL, Davies PL. 1985. Antifreeze protein genes are tandemly linked and clustered in the genome of the winter flounder. Proc Natl Acad Sci USA. 82:2613–2617.
  • Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL. 2006. The basis for hyperactivity of antifreeze proteins. Cryobiology. 53:229–239.
  • Sicheri F, Yang DS. 1995. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature. 375:427–431.
  • Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CL. 1981. Antifreeze proteins from the sea raven, Hemitripterus americanus. Further evidence for diversity among fish polypeptide antifreezes. J Biol Chem. 256:2022–2026.
  • Sönnichsen FD, DeLuca CI, Davies PL, Sykes BD. 1996. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure. 4:1325–1337.
  • Stickley CE, St John K, Koç N, Jordan RW, Passchier S, Pearce RB, Kearns L. 2009. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature. 460:376–379.
  • Sun T, Gauthier SY, Campbell RL, Davies PL. 2015. Revealing surface waters on an antifreeze protein by fusion protein crystallography combined with molecular dynamic simulations. J Phys Chem B. 119:12808–12815.
  • Sun T, Lin FH, Campbell RL, Allingham JS, Davies PL. 2014. An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science. 343:795–798.
  • The ARCDP Project. 2009. Optimal net depth for over-wintering Bay d’Espoir, Newfoundland and Labrador, Aquaculture Salmonids. In: Aquaculture Collaborative Research and Development Program (ACRDP) fact sheet. Ottawa (ON): Fisheries and Oceans Canada. http://www.dfo-mpo.gc.ca/aquaculture/acrdp-pcrda/fsheet-ftechnique/issue-fiche-02-eng.html
  • The Canadian Press. 2015. Extreme cold cause of fish deaths at N.S. aquaculture sites; [ accessed Mar 12]. https://atlantic.ctvnews.ca/extreme-cold-cause-of-fish-deaths-at-n-s-aquaculture-sites-1.2276322.
  • Tripati A, Darby D. 2018. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice. Nat Comm. 9:1038.
  • Wang X, DeVries AL, Cheng CH. 1995. Genomic basis for antifreeze peptide heterogeneity and abundance in an Antarctic eel pout: gene structures and organization. Mol Mar Biol Biotechnol. 4:135–147.
  • Watson CE, Davies PL. 1998. The high molecular weight chromatin proteins of winter flounder sperm are related to an extreme histone H1 variant. J Biol Chem. 273:6157–6162.
  • Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D. 1998. A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science. 282:115–117.
  • Yang C, Sharp KA. 2005. Hydrophobic tendency of polar group hydration as a major force in type I antifreeze protein recognition. Proteins. 59:266–274.
  • Zilli L, Beirão J, Schiavone R, Herraez MP, Gnoni A, Vilella S. 2014. Comparative proteome analysis of cryopreserved flagella and head plasma membrane proteins from sea bream spermatozoa: effect of antifreeze proteins. PLoS ONE. 9(6):e99992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.