64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of deleterious non-synonymous SNPs of human MDC1 gene: an in silico approach

, ORCID Icon & ORCID Icon
Pages 101-112 | Received 22 Jun 2023, Accepted 24 Feb 2024, Published online: 17 Apr 2024

References

  • Adzhubei I, Jordan DM, Sunyaev SR. 2013. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. Chapter 7(1):Unit7.20. doi:10.1002/0471142905.hg0720s76.
  • Amir M, Kumar V, Mohammad T, Dohare R, Rehman MT, Alajmi MF, Hussain A, Ahmad F, Hassan MI. 2019. Structural and functional impact of non-synonymous SNPs in the CST complex subunit TEN1: structural genomics approach. Biosci Rep. 39(5):BSR20190312. http://dx.doi.org/10.1042/BSR20190312. doi:10.1042/BSR20190312.
  • Ando K, Ozaki T, Hirota T, Nakagawara A. 2013. NFBD1/MDC1 is phosphorylated by PLK1 and controls G2/M transition through the regulation of a TOPOIIα-mediated decatenation checkpoint. PLoS One. 8(12):e82744. http://dx.doi.org/10.1371/journal.pone.0082744. doi:10.1371/journal.pone.0082744.
  • Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44(W1):W344–50. doi:10.1093/nar/gkw408.
  • Bienert S, Waterhouse A, Beer D, Tauriello TA, Studer G, Bordoli G, Schwede L. 2017. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 45(D1):D313–D319. doi:10.1093/nar/gkw1132.
  • Bromberg Y, Rost B. 2007. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 35(11):3823–3835. doi:10.1093/nar/gkm238.
  • Cheng J, Randall A, Baldi P. 2006. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 62(4):1125–1132. doi:10.1002/prot.20810.
  • Choi H-S, Baek K-H. 2022. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell Mol Life Sci. 79(2):117. http://dx.doi.org/10.1007/s00018-022-04132-5. doi:10.1007/s00018-022-04132-5.
  • Coster G, Goldberg M. 2010. The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Nucleus. 1(2):166–178. doi:10.4161/nucl.1.2.11176.
  • Di Masi A, Viganotti M, Polticelli F, Ascenzi P, Tanzarella C, Antoccia A. 2008. The R215W mutation in NBS1 impairs γ-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients. Biochem Biophys Res Commun. 369(3):835–840. doi:10.1016/j.bbrc.2008.02.129.
  • Eliezer Y, Argaman L, Kornowski M, Roniger M, Goldberg M. 2014. Interplay between the DNA damage proteins MDC1 and ATM in the regulation of the spindle assembly checkpoint. J Biol Chem. 289(12):8182–8193. http://dx.doi.org/10.1074/jbc.m113.532739. doi:10.1074/jbc.m113.532739.
  • Hafner A, Bulyk ML, Jambhekar A, Lahav G. 2019. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 20(4):199–210. http://dx.doi.org/10.1038/s41580-019-0110-x. doi:10.1038/s41580-019-0110-x.
  • Hassan MS, Shaalan AA, Dessouky MI, Abdelnaiem AE, ElHefnawi M. 2018. A review study: computational techniques for expecting the impact of non-synonymous single nucleotide variants in human diseases. Gene. 680:20–33. doi:10.1016/j.gene.2018.09.028.
  • Havranek B, Islam SM. 2021. Prediction and evaluation of deleterious and disease causing non-synonymous SNPs (nsSNPs) in human NF2 gene responsible for neurofibromatosis type 2 (NF2). J Biomol Struct Dyn. 39(18):7044–7055. doi:10.1080/07391102.2020.1805018.
  • Huang R, Zhou P-K. 2021. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 6(1):254. http://dx.doi.org/10.1038/s41392-021-00648-7. doi:10.1038/s41392-021-00648-7.
  • Islam MJ, Khan AM, Parves MR, Hossain MN, Halim MA. 2019. Prediction of deleterious non-synonymous SNPs of human STK11 gene by combining algorithms, molecular docking, and molecular dynamics simulation. Sci Rep. 9(1):16426. doi:10.1038/s41598-019-52308-0.
  • Jungmichel S, Clapperton JA, Lloyd J, Hari FJ, Spycher C, Pavic L, Li J, Haire LF, Bonalli M, Larsen DH, et al. 2012. The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator. Nucleic Acids Res. 40(9):3913–3928. doi:10.1093/nar/gkr1300.
  • Kastan MB, Bartek J. 2004. Cell-cycle checkpoints and cancer. Nature. 432(7015):316–323. doi:10.1038/nature03097.
  • Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, Sommer MOA, Winther O, Nielsen M, Petersen B, et al. 2019. NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins. 87(6):520–527. doi:10.1002/prot.25674.
  • Laskowski RA, MacArthur MW, Thornton JM. 2012. PROCHECK: validation of protein-structure coordinates. In: International tables for crystallography. Chester, England: International Union of Crystallography; p. 684–687.
  • Lengths M, Angles M. 2018. Limitations of structure evaluation tools errat. Quick Guideline Comput Drug Des. 16:75
  • Li G, Panday SK, Alexov E. 2021. SAAFEC-SEQ: a sequence-based method for predicting the effect of single point mutations on protein thermodynamic stability. Int J Mol Sci. 22(2):606. doi:10.3390/ijms22020606.
  • Mi H, Muruganujan A, Thomas PD. 2013. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 41(Database issue):D377–86. doi:10.1093/nar/gks1118.
  • Mitsopoulos C, Di Micco P, Fernandez EV, Dolciami D, Holt E, Mica IL, Coker EA, Tym JE, Campbell J, Che KH, et al. 2021. canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 49(D1):D1074–D1082. doi:10.1093/nar/gkaa1059.
  • Nagy Á, Győrffy B. 2021. muTarget: a platform linking gene expression changes and mutation status in solid tumors. Int J Cancer. 148(2):502–511. doi:10.1002/ijc.33283.
  • Oka Y, Suzuki K, Yamauchi M, Mitsutake N, Yamashita S. 2011. Recruitment of the cohesin loading factor NIPBL to DNA double-strand breaks depends on MDC1, RNF168 and HP1γ in human cells. Biochem Biophys Res Commun. 411(4):762–767. doi:10.1016/j.bbrc.2011.07.021.
  • Ozaki T, Bu Y, Nagase H. 2015. NFBD1/MDC1: DNA damage response, cell cycle regulation and carcinogenesis. Cancer Res Front. 1(1):49–59. doi:10.17980/2015.49.
  • Ruff SE, Logan SK, Garabedian MJ, Huang TT. 2020. Roles for MDC1 in cancer development and treatment. DNA Repair (Amst). 95:102948. doi:10.1016/j.dnarep.2020.102948.
  • Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Farrell CM, Feldgarden M, Fine AM, Funk K, et al. 2022. Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 51(D1):D29–D38. doi:10.1093/nar/gkac1032.
  • Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. 2012. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40(Web Server issue):W452–W457. doi:10.1093/nar/gks539.
  • Singh N, Bhakuni R, Chhabria D, Kirubakaran S. 2020. MDC1 depletion promotes cisplatin-induced cell death in cervical cancer cells. BMC Res Notes. 13(1):146. doi:10.1186/s13104-020-04996-5.
  • Smigielski EM, Sirotkin K, Ward M, Sherry ST. 2000. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 28(1):352–355. doi:10.1093/nar/28.1.352.
  • Sottnik JL, Bordeaux EK, Mehrotra S, Ferrara SE, Goodspeed AE, Costello JC, Sikora MJ. 2021. Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor coregulator in invasive lobular carcinoma of the breast. Mol Cancer Res. 19(8):1270–1282. http://dx.doi.org/10.1158/1541-7786.MCR-21-0025. doi:10.1158/1541-7786.MCR-21-0025.
  • Soudy M, Anwar AM, Ahmed EA, Osama A, Ezzeldin S, Mahgoub S, Magdeldin S. 2020. UniprotR: retrieving and visualizing protein sequence and functional information from Universal Protein Resource (UniProt knowledgebase). J Proteomics. 213:103613. doi:10.1016/j.jprot.2019.103613.
  • Stewart GS, Wang B, Bignell CR, Taylor AMR, Elledge SJ. 2003. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 421(6926):961–966. http://dx.doi.org/10.1038/nature01446. doi:10.1038/nature01446.
  • Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al. 2021. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49(D1):D605–D612. doi:10.1093/nar/gkaa1074.
  • Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. 2017. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45(W1):W98–W102. doi:10.1093/nar/gkx247.
  • Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Zharkikh A, Thomas A. 2006. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 43(4):295–305. doi:10.1136/jmg.2005.033878.
  • Unberath P, Knell C, Prokosch H-U, Christoph J. 2019. Developing new analysis functions for a translational research platform: extending the cBioPortal for cancer genomics. Stud Health Technol Inform. 258:46–50.
  • Van den Broeck T, Joniau S, Clinckemalie L, Helsen C, Prekovic S, Spans L, Tosco L, Van Poppel H, Claessens F. 2014. The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making. Biomed Res Int. 2014:1–16. doi:10.1155/2014/627510.
  • Wang H, Lou D, Wang Z. 2018. Crosstalk of genetic variants, allele-specific DNA methylation, and environmental factors for complex disease risk. Front Genet. 9:695. doi:10.3389/fgene.2018.00695.
  • Wang B, Zhang L, Qiu F, Fang W, Deng J, Zhou Y, Lu J, Yang L. 2014. A Newfound association between MDC1 functional polymorphism and lung cancer risk in Chinese. PLoS One. 9(9):e106794. doi:10.1371/journal.pone.0106794.
  • Wiederstein M, Sippl MJ. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(Web Server issue):W407–10. doi:10.1093/nar/gkm290.
  • Wu L, Luo K, Lou Z, Chen J. 2008. MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc Natl Acad Sci U S A. 105(32):11200–11205. http://dx.doi.org/10.1073/pnas.0802885105. doi:10.1073/pnas.0802885105.
  • Xie R, Yan Z, Jing J, Wang Y, Zhang J, Li Y, Liu X, Yu X, Wu C. 2022. Functional defects of cancer-associated MDC1 mutations in DNA damage repair. DNA Repair (Amst). 114:103330. doi:10.1016/j.dnarep.2022.103330.
  • Zhao X-Y, Wang X-Y, Wei Q-Y, Xu Y-M, Lau ATY. 2020. Potency and selectivity of SMAC/DIABLO mimetics in solid tumor therapy. Cells. 9(4):1012. http://dx.doi.org/10.3390/cells9041012. doi:10.3390/cells9041012.
  • Zhou X, Zheng W, Li Y, Pearce R, Zhang C, Bell EW, Zhang G, Zhang Y. 2022. I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nat Protoc. 17(10):2326–2353. doi:10.1038/s41596-022-00728-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.