576
Views
0
CrossRef citations to date
0
Altmetric
Article

On-chip waste heat-driven absorption cooling system for sustainable data center environment: simulation

&
Pages 224-239 | Received 16 Jun 2016, Accepted 24 Oct 2016, Published online: 08 Nov 2017

References

  • Agrawal, Tanmay, Varun, Anoop Kumar. 2015. Solar Absorption Refrigeration System for Air-conditioning of a Classroom Building in Northern India. Journal of the Institution of Engineers (India): Series C 96: 389–396. doi:10.1007/s40032-015-0180-2.
  • Agyenim, F., I. Knight, and M. Rhodes. 2010. “Design and Experimental Testing of the Performance of an Outdoor LiBr/H2O Solar Thermal Absorption Cooling System with a Cold Store.” Solar Energy 84: 735–744.10.1016/j.solener.2010.01.013
  • Alva, L., and J. Gonzalez. 2002. “Simulation of an Air-cooled Solar-assisted Absorption Air Conditioning System.” Journal of Solar Energy Engineering 124 (3): 276–282. doi:10.1115/1.1487885.
  • Aphornratana, S., and T. Sriveerakul. 2007. “Experimental Studies of a Single-effect Absorption Refrigerator Using Aqueous Lithium-Bromide: Effect of Operating Condition to System Performance.” Experimental Thermal and Fluid Science 32: 658–669. doi:10.1016/j.expthermflusci.2007.08.003.
  • Asdrubali, F., and S. Grignaffini. 2005. “Experimental Evaluation of the Performances of a H2O–LiBr Absorption Refrigerator under Different Service Conditions.” International Journal of Refrigeration 28: 489–497. doi:10.1016/j.ijrefrig.2004.11.006.
  • Atilgan, Ibrahim, and Cevdet Aygun. 2014. “Simulation of Double Effect Absorption Refrigeration System.” Progress in Sustainable Energy Technologies 2: 685–703. doi:10.1007/978-3-319-07977-6_45.
  • Atmaca, A., and A. Yigit. 2003. “Simulation of Solar-Powered Absorption Cooling System.” Renewable Energy 28: 1277–1293. doi:10.1016/S0960-1481(02)00252-5.
  • Bin, Lu, W. J. Meng, and Fanghua Mei. 2012. “Microelectronic Chip Cooling: An Experimental Assessment of a Liquid-Passing Heat Sink, a Microchannel Heat Rejection Module, and a Microchannel-based Recirculating-Liquid Cooling System.” Microsystem Technologies 18 (2): 341–352. doi:10.1007/s00542-011-1397-5.
  • Bintoro, J. S., A. Akbarzadeh, and M. Mochizuki. 2005. “A Closed-loop Electronics Cooling by Implementing Single Phase Impinging Jet and Mini Channels Heat Exchanger.” Applied Thermal Engineering 25: 2740–2753. doi:10.1016/j.applthermaleng.2005.01.018.
  • Brown, R., E. Masanet, B. Nordman, B. Tschudi, A. Shehabi, J. Stanley, et al. 2008. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431. Berkeley, CA: Lawrence Berkeley National Laboratory.
  • Brunschwiler, T., B. Smith, E. Ruetsche, and B. Michel. 2009. “Toward Zero-Emission Data Centers through Direct Reuse of Thermal Energy.” IBM Journal of Research and Development 53 (3):1–13.
  • Cantarutti, Bruno Ribeiro. 2011. “Theoretical-Experimental Analysis of a Cooling System for Absorption Effect Using Simple LiBr–H2O.” Master thesis. Federal University of Itajuba Institute of Mechanical Engineering Graduate Program in Mechanical Engineering. http://saturno.unifei.edu.br/bim/0038210.pdf.
  • Chevron. 2014. Energy Supply and Demand. http://www.chevron.com/globalissues/energysupplydemand/.
  • Chiriac, Victor, and Florea Chiriac. 2010. Absorption Refrigeration Method with Alternative Water-Ammonia Solution Circulation System for Microelectronics Cooling. Proceedings of ITHERM 2010, June 2–5, Las Vegas, NY. doi:10.1109/ITHERM.2010.5501391.
  • Coggins, C., D. Gerlach, Y. Joshi, A. Fedorov. 2006. “Compact, Low Temperature Refrigeration of Microprocessors.” In: International Refrigeration and Air Conditioning Conference at Purdue, Paper No. R064, West Lafayette, IN, July 15–20. http://docs.lib.purdue.edu/iracc/814/.
  • Cunha, Francisco Ricardo, H. L. G. Couto, and N. B. Marcelino. 2007. “A Study on Magnetic Convection in a Narrow Rectangular Cavity.” Magnetohydrodynamics 43 (8): 421–428 http://adsabs.harvard.edu/abs/2007MHD..43.421C.
  • Ebrahimi, Khosrow, Gerard F. Jones, and Amy S. Fleischer. 2015. “Thermo-economic Analysis of Steady State Waste Heat Recovery in Data Centers Using Absorption Refrigeration.” Applied Energy 139 (1): 384–397. doi:10.1016/j.apenergy.2014.10.067.
  • El-Gohary, Morsy M. 2013. “Economical Analysis of Combined Fuel Cell Generators and Absorption Chillers.” Alexandria Engineering Journal 52 (2): 151–158. doi:10.1016/j.aej.2012.12.004.
  • Fan, X., G. Zeng, C. LaBounty, J. E. Bowers, E. Croke, C. C. Ahn, S. Huxtable, A. Majumdar, and A. Shakouri. 2001. “SiGeC/Si Superlattice Microcoolers.” Applied Physics Letters 78 (11): 1580–1582. doi:10.1063/1.1356455.10.1063/1.1356455
  • Fan, Y., L. Luo, and B. Souyri. 2007. “Review of Solar Sorption Refrigeration Technologies: Development and Applications.” Renewable and Sustainable Energy Reviews 11 (8): 1758–1775.10.1016/j.rser.2006.01.007
  • Flores, Víctor Hugo Flores, Jesús Cerezo Román, and Gisela Montero Alpírez. 2014. “Performance Analysis of Different Working Fluids for an Absorption Refrigeration Cycle.” American Journal of Environmental Engineering 4 (4A): 1–10. doi:10.5923/s.ajee.201401.01.
  • Florides, G. A., S. A. Kalogirou, S. A. Tassou, and L. C. Wrobel. 2003. “Design and Construction of a LiBr-Water Absorption Machine.” Energy Conversion and Management 44: 2483–2508. doi:10.1016/S0196-8904(03)00006-2.
  • França, Francis Henrique Ramos, Y. M. O. L. K. I. Zhao, M. Ohadi, and M. R. R. Radermacher. 2002. “Flow Boiling of CO2 with Miscible Oil in Microchannels.” ASHRAE Transactions 108 (1): 135–144 http://www.techstreet.com/products/1719532.
  • França, Francis Henrique Ramos, Elizaldo D. dos Santos, Liércio A. Isoldi, and Adriane P. Petry. 2014. “A Numerical Study of Combined Convective and Radiative Heat Transfer in Non-reactive Turbulent Channel Flows with Several Optical Thicknesses: A Comparison between LES and RANS.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 36 (1): 207–219. doi:10.1007/s40430-013-0075-1.
  • Grossman, Gershon, and Abdi Zaltash. 2001. “ABSIM-Modular Simulation of Advanced Absorption Systems.” International Journal of Refrigeration 24 (6): 531–543. doi:10.1016/S0140-7007(00)00051-7.
  • Guo, Peijun, Jun Sui, Wei Han, Jianjiao Zheng, Hongguang Jin. 2012. “Energy and Exergy Analyses on the Off-Design Performance of an Absorption Heat Transformer.” Applied Thermal Engineering 48: 506–514.10.1016/j.applthermaleng.2012.04.018
  • Hewitt, Neil, Francis Agyenim, Philip Eames, and Mervyn Smyth. 2010. “A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS).” Renewable and Sustainable Energy Reviews 14 (2): 615–628. doi:10.1016/j.rser.2009.10.015.
  • Incopera, Dewitt, and Lavine Bergman. 2007. Fundamental of Heat and Mass Transfer. 6th ed. Wiley.
  • Iranmanesh, A., and M. A. Mehrabian. 2012. “Thermodynamic Modelling of a Double-Effect LiBr–H2O Absorption Refrigeration Cycle.” Heat and Mass Transfer 48 (12): 2113–2123.10.1007/s00231-012-1045-3
  • Iyengar, M., and R. Schmidt. 2009. “Analytical Modeling for Thermodynamic Characterization of Data Center Cooling Systems.” J Electron Packaging 131: 1–9. EP-08-1048.
  • Jiang, L., J. Mikkelsen, J. M. Koo, D. Huber, S. Yao, L. Zhang, P. Zhou, et al. 2002. “Closed-loop Electroosmotic Microchannel Cooling System for VLSI Circuits.” IEEETransactions on Components and Packaging Technologies 25 (3): 347–355. doi:10.1109/TCAPT.2002.800599.
  • Joudi, Khalid A., and Ali H. Lafta. 2001. “Simulation of a Simple Absorption Refrigeration System.” Energy Conversion and Management 42: 1575–1605. doi:10.1016/j.solener.2010.01.013.
  • Karno, Ali, and Salman Ajib. 2008. “Thermodynamic Analysis of an Absorption Refrigeration Machine with New Working Fluid for Solar Applications.” Heat and Mass Transfer 45 (1): 71–81.10.1007/s00231-008-0408-2
  • Kaushika, S. C., and Akhilesh Arora. 2009. “Energy and Exergy Analysis of Single Effect and Series Flow Double Effect Water–Lithium Bromide Absorption Refrigeration Systems.” International Journal of Refrigeration 32 (6): 1247–1258. doi:10.1016/j.ijrefrig.2009.01.017.
  • Kaynakli, Omer, and Muhsin Kilic. 2007. “Theoretical Study on the Effect of Operating Conditions on Performance of Absorption Refrigeration System.” Energy Conversion and Management 48: 599–607. doi:10.1016/j.enconman.2006.06.005.
  • Keçeciler, Abdullah, H. İbrahim Acar, and Ayla Doğan. 2000. “Thermodynamic Analysis of the Absorption Refrigeration System with Geothermal Energy: An Experimental Study.” Energy Conversion and Management 41 (1): 37–48. doi:10.1016/S0196-8904(99)00091-6.
  • Kim, Yoon Jo, Yogendra K. Joshi, and Andrei G. Fedrov. 2008. “An Absorption Based Miniature Heat Pump System for Electronics Cooling.” International Journal of Refrigeration 31: 23–33. doi:10.1016/j.ijrefrig.2007.07.003.
  • Koehler, Wolf J., Warren E. Ibele, Joseph Soltes, and Edgar R. Winter. 1988. “Availability Simulation of a Lithium Bromide Absorption Heat Pump.” Heat Recovery Systems and CHP 8 (2): 157–171. doi:10.1016/0890-4332(88)90008-7.
  • Lee, S. F., and S. A. Sherif. 2000. “Thermodynamic Analysis of a Lithium Bromide/Water Absorption System for Cooling and Heating Applications.” International Journal of Energy Research 25: 1019–1031. doi:10.1002/er.738.
  • Marc, O., F. Lucas, F. Sinama, and E. Monceyron. 2010. “Experimental Investigation of a Solar Cooling Absorption System Operating without Any Backup System under Tropical Climate.” Energy and Buildings 42: 774–782. doi:10.1016/j.expthermflusci.2007.08.003.
  • Martinez, P., and J. Pinazo. 2002. “A Method for Design Analysis of Absorption Machines.” International Journal of Refrigeration 25 (5): 634–639. doi:10.1016/S0140-7007(01)00052-4.
  • Martínez, H., and W. Rivera. 2009. “Energy and Exergy Analysis of a Double Absorption Heat Transformer Operating with Water/Lithium Bromide.” International Journal of Energy Research 33 (7): 662–674. doi:10.1002/er.1502. http://in.mathworks.com/matlabcentral/fileexchange/9817-x-steam–thermodynamic-properties-of-water-and-steam.
  • Maydanik, Y. F., S. V. Vershinin, M. A. Korukov, and J. M. Ochterbeck. 2005. “Miniature Loop Heat Pipes – A Promising Means for Electronics Cooling.” IEEE Transactions on Components and Packaging Technologies 28 (2): 290–296. doi:10.1109/TCAPT.2005.848487.
  • Mehrabian, M. A., and A. E. Shahbeik. 2005. “Thermodynamic Modelling of a Single-effect LiBr–H2O Absorption Refrigeration Cycle.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 219 (3): 261–273. doi:10.1243/095440805X8656.
  • Melograno, P., J. Santiago, G. Franchini, and W. Sparber. 2009. Experimental Analysis of a Discontinuous Sorption Chiller Operated in Steady Conditions. 3rd International Conference Solar Air Conditioning Proceedings, Palermo, Italy. http://www.researchgate.net/publication/228607232_Experimental_Analysis_of_a_Discontinuous_Sorption_Chiller_Operated_in_Steady_Conditions.
  • Mongia, R., K. Masahiro, E. DiStefano, J. Barry, W. Chen, M. Izenson, F. Possamai, et al. 2006. Small Scale Refrigeration System for Electronics Cooling within a Notebook Computer. In: ITHERM’06, Proceedings of the Tenth Intersociety Conference on Thermal and Thermo mechanical Phenomena in Electronics Systems, San Diego, USA, May 30–June 2: 751–758. doi:10.1109/ITHERM.2006.1645421.
  • Mostafavi, M., and B. Agnew. 1996. “The Impact of Ambient Temperature on Lithiumbromide/Water Absorption Machine Performance.” Applied Thermal Engineering 16 (6): 515–522. doi:10.1016/1359-4311(95)00004-6.
  • Mudawar, Issam. 2011. “Two-phase Microchannel Heat Sinks: Theory.” Applications, and Limitations, Journal of Electronic Packaging 133: 1–31. doi:10.1115/1.4005300.
  • Mudawar, Issam, and Qu Weilin. 2005. “A Systematic Methodology for Optimal Design of Two-phase Micro-channel Heat Sinks.” Journal of Electronic Packaging 127: 381–390. doi:10.1115/1.2056571.
  • Nozaki, Y. 2009. “Development of Higher-voltage Direct Current Power Feeding System for ICT Equipment.” NTT Technical Review 7 (10).
  • Pal, A., Y. K. Joshi, M. H. Beitelmal, C. D. Patel, and T. M. Wenger. 2002. “Design and Performance Evaluation of a Compact Thermosyphon.” IEEE Transactions on Components and Packaging Technologies 25 (4): 601–607. doi:10.1109/TCAPT.2002.807997.
  • Parise, José Alberto dos Reis, J. V. C. Vargas, I. Vargas, T. M. S. Horuz, and J. S. Fleming Callander. 1988. “Simulation of the Transient Response of Heat Driven Refrigerators with Continuous Temperature Control: Simulation de la réponse transitoire des réfrigérateurs utilisant une source de chaleur avec maı̂trise de la température en continu.” International Journal of Refrigeration 21 (8): 648–660. doi:10.1016/S0140-7007(98)00009-7.
  • Pátek, J., and J. Klomfar. 2006. “A Computationally Effective Formulation of the Thermodynamic Properties of LiBr–H2O Solutions from 273 to 500 K over Full Composition Range.” International Journal of Refrigeration 29 (4): 566–578. doi:10.1016/j.ijrefrig.2005.10.007.
  • Pongtornkulpanich, A., S. Thepa, M. Amornkitbamrun, and C. Butcher. 2008. “Experience with Fully Operational Solar-Driven 10-Ton LiBr/H2O Single-effect Absorption Cooling System in Thailand.” Renewable Energy 33: 943–949. doi:10.1016/j.renene.2007.09.022.
  • Qi, Zhaogang, Jiangping Chen, and Reinhard Radermacher. 2009. “Investigating Performance of New Mini-channel Evaporators.” Applied Thermal Engineering 29 (17–18): 3561–3567. doi:10.1016/j.applthermaleng.2009.06.011.
  • Rahimifard, Shahin, Elliot Woolley, Yang Luo, and Alessandro Simeone. 2014. “Improving Energy Efficiency within Manufacturing by Recovering Waste Heat Energy.” Journal of Thermal Engineering 1 (1): 337–344.
  • Rehmana, M., S. Noreenb, A. Haiderc, and H. Azamd. 2015. “Effect of Heat Sink/Source on Peristaltic Flow of Jeffrey Fluid through a Symmetric Channel.” Alexandria Engineering Journal. 54 (3), September 2015, 733–743. doi:10.1016/j.aej.2015.03.011.
  • Ribeiro, Guilherme B., Jader R. Barbosa, Jr., and Alvaro T. Prata. 2010. “Mini-channel Evaporator/Heat Pipe Assembly for a Chip Cooling Vapor Compression Refrigeration System.” International Journal of Refrigeration 33 (7): 1402–1412. doi:10.1016/j.ijrefrig.2010.05.010.
  • Romero, R. J., W. Rivera, and R. Best. 2000. “Comparison of the Theoretical Performance of a Solar Air Conditioning System Operating with Water/Lithium Bromide and an Aqueous Ternary Hydroxide.” Solar Energy Material Solar Cells 63 (3): 87–99. doi:10.1016/S0927-0248(00)00058-1.
  • Rubio-Maya, Carlos, J. Jesús Pacheco-Ibarra, Juan M. Belman-Flores, Sergio R. Galván-González, and Crisanto Mendoza-Covarrubias. 2012. “NLP Model of a LiBr–H2O Absorption Refrigeration System for the Minimization of the Annual Operating Cost.” Applied Thermal Engineering 37: 10–18.10.1016/j.applthermaleng.2011.12.035
  • Saravanan, R., and M. P. Maiya. 1998. “Thermodynamic Comparison of Water-based Working Fluid Combinations for a Vapor Absorption Refrigeration System.” Applied Thermal Engineering 18 (7): 553–568. doi:10.1016/S1359-4311(97)00072-0.
  • Saravanan, R., and S. Sekar. 2011. “Experimental Studies on Absorption Heat Transformer Coupled Distillation System.” Desalination 274: 292–301. doi:10.1016/j.desal.2011.01.064.
  • Sedighi, K., M. Farhadi, and M. Liaghi. 2007. “Exergy Analysis: Parametric Study on Lithium Bromide – Water Absorption Refrigeration Systems.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221 (11): 1345–1351. doi:10.1243/09544062JMES604.
  • Sencana, Arzu, Kemal A. Yakut, and Soteris A. Kalogirou. 2005. “Exergy Analysis of Lithium Bromide/Water Absorption Systems.” Renewable Energy 30: 645–657. doi:10.1016/j.renene.2004.07.006.
  • Sinha, A., G. C. Shit, and N. K. Ranjit. 2015. “Peristaltic Transport of MHD Flow and Heat Transfer in an Asymmetric Channel: Effects of Variable Viscosity, Velocity-Slip and Temperature Jump.” Alexandria Engineering Journal. 54 (3), September 2015, 691–704. doi:10.1016/j.aej.2015.03.030.
  • Srinivasa Murthy, S., M. B. Arun, and M. P. Maiya. 2001. “Performance Comparison of Double-effect Parallel-Flow and Series Flow Water–Lithium Bromide Absorption Systems.” Applied Thermal Engineering 21 (12): 1273–1279. doi:10.1016/S1359-4311(01)00005-9.
  • Sun, Da-Wen. 1997. “Thermodynamic Design Data and Optimum Design Maps for Absorption Refrigeration Systems.” Applied Thermal Engineering 17 (3): 211–221. doi:10.1016/S1359-4311(96)00041-5.
  • Talbi, M. M., and B. Agnew. 2000. “Exergy Analysis: An Absorption Refrigerator Using Lithium Bromide and Water as the Working Fluids.” Applied Thermal Engineering 20: 619–630. doi:10.1016/S1359-4311(99)00052-6.
  • Tan, F. L., and C. P. Tso. 2004. “Cooling of Mobile Electronic Devices Using Phase Change Materials.” Applied Thermal Engineering 24: 159–169. doi:10.1016/j.applthermaleng.2003.09.005.
  • Trutassanawin, Suwat, Eckhard A. Groll, Suresh V. Garimella, and Lorenzo Cremaschi. 2006. “Experimental Investigation of a Miniature-Scale Refrigeration System for Electronics Cooling.” IEEE Transactions on Components and Packaging Technologies 29: 678–687.10.1109/TCAPT.2006.881762
  • Tuckerman, D. B., and R. F. W. Pease. 1981. “High-performance Heat Sinking for VLSI.” IEEE Electron Device Letters 2: 126–129. doi:10.1109/EDL.1981.25367.
  • Yang, W.-J., and K. H. Guo. 1987. “Solar-assisted Lithium-Bromide Absorption Cooling Systems.” Solar Energy Utilization NATO ASI Series 129: 409–423. doi:10.1007/978-94-009-3631-7_19.
  • Yoon, Jung-In, Kwang-Hwan Choi, Choon-Geun Moon, Young Jin Kim, and Oh- Kyung Kwon. 2003. “A Study on the Advanced Performance of an Absorption Heater/Chiller with a Solution Preheater Using Waste Gas.” Applied Thermal Engineering 23: 757–767. doi:10.1016/S1359-4311(03)00003-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.