1,705
Views
17
CrossRef citations to date
0
Altmetric
Articles

Performance characterization of a direct evaporative cooling pad based on pottery material

ORCID Icon, , , &
Pages 46-56 | Received 19 Jun 2019, Accepted 02 Oct 2019, Published online: 17 Oct 2019

References

  • Alodan, M. A., and A. A. Al-Faraj. (2005). “Design and Evaluation of Galvanized Metal Sheets as Evaporative Cooling Pads.” Journal of King Saud University Agricultural Science 18 (1): 9–18.
  • Abohorlu Doğramacı, P., S. Riffat, G. Gan, and D. Aydın. 2019. “Experimental Study of the Potential of Eucalyptus Fibres for Evaporative Cooling.” Renewable Energy 131: 250–260. doi:10.1016/j.renene.2018.07.005.
  • Ahmed, E. M., O. Abaas, M. Ahmed, and M. R. Ismail. 2011. “Performance Evaluation of Three Different Types of Local Evaporative Cooling Pads in Greenhouses in Sudan.” Saudi Journal of Biological Sciences 18 (1): 45–51. doi:10.1016/j.sjbs.2010.09.005.
  • Aljubury, I. M. A., and H. D. Ridha. 2017. “Enhancement of Evaporative Cooling System in a Greenhouse Using Geothermal Energy.” Renewable Energy 111: 321–331. doi:10.1016/j.renene.2017.03.080.
  • Al-Sulaiman, F. 2002. “Evaluation of the Performance of Local Fibers in Evaporative Cooling.” Energy Conversion and Management 43 (16): 2267–2273. doi:10.1016/S0196-8904(01)00121-2.
  • ASHRAE. 2015. ASHRAE Standard 133-2015: Method of Testing Direct Evaporative Air Coolers.
  • Bell, I. H., J. Wronski, S. Quoilin, and V. Lemort. 2014. “Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-source Thermophysical Property Library CoolProp.” Industrial & Engineering Chemistry Research 53 (6): 2498–2508. doi:10.1021/ie4033999.
  • Bishoyi, D., and K. Sudhakar. 2017. “Experimental Performance of a Direct Evaporative Cooler in Composite Climate of India.” Energy and Buildings 153: 190–200. doi:10.1016/j.enbuild.2017.08.014.
  • Camargo, J. R., C. D. Ebinuma, and J. L. Silveira. 2005. “Experimental Performance of a Direct Evaporative Cooler Operating during Summer in a Brazilian City.” International Journal of Refrigeration 28 (7): 1124–1132. doi:10.1016/j.ijrefrig.2004.12.011.
  • Davies, P. A., A. K. Hossain, and P. Vasudevan. 2009. “Stand-alone Groundwater Desalination System Using Reverse Osmosis Combined with a Cooled Greenhouse for Use in Arid and Semi-arid Zones of India.” Desalination and Water Treatment 5 (1–3): 223–234. doi:10.5004/dwt.2009.520.
  • Dhamneya, A. K., S. P. S. Rajput, and A. Singh. 2018. “Thermodynamic Performance Analysis of Direct Evaporative Cooling System for Increased Heat and Mass Transfer Area.” Ain Shams Engineering Journal 9 (4): 2951–2960. doi:10.1016/j.asej.2017.09.008.
  • Elattar, H. F., A. Fouda, and S. A. Nada. 2016. “Performance Investigation of a Novel Solar Hybrid Air Conditioning and Humidification–Dehumidification Water Desalination System.” Desalination 382: 28–42. doi:10.1016/j.desal.2015.12.023.
  • Gunhan, T., V. Demir, and A. K. Yagcioglu. 2007. “Evaluation of the Suitability of Some Local Materials as Cooling Pads.” Biosystems Engineering 96 (3): 369–377. doi:10.1016/j.biosystemseng.2006.12.001.
  • Hu, S. S., and B. J. Huang. 2005. “Study of a High Efficiency Residential Split Water-cooled Air Conditioner.” Applied Thermal Engineering 25 (11): 1599–1613. doi:10.1016/j.applthermaleng.2004.11.011.
  • Jain, J. K., and D. A. Hindoliya. 2011. “Experimental Performance of New Evaporative Cooling Pad Materials.” Sustainable Cities and Society 1 (4): 252–256. doi:10.1016/j.scs.2011.07.005.
  • Jradi, M., and S. Riffat. 2016. “Testing and Performance Analysis of a Hollow Fiber-based Core for Evaporative Cooling and Liquid Desiccant Dehumidification.” International Journal of Green Energy 13 (13): 1388–1399. doi:10.1080/15435075.2016.1183205.
  • Kabeel, A. E., and M. M. Bassuoni. 2017. “A Simplified Experimentally Tested Theoretical Model to Reduce Water Consumption of A Direct Evaporative Cooler for Dry Climates.” International Journal of Refrigeration 82: 487–494. doi:10.1016/j.ijrefrig.2017.06.010.
  • Kovačević, I., and M. Sourbron. 2017. “The Numerical Model for Direct Evaporative Cooler.” Applied Thermal Engineering 113: 8–19. doi:10.1016/j.applthermaleng.2016.11.025.
  • Laknizi, A., M. Mahdaoui, A. B. Abdellah, K. Anoune, M. Bakhouya, and H. Ezbakhe. 2019. “Performance Analysis and Optimal Parameters of a Direct Evaporative Pad Cooling System under the Climate Conditions of Morocco.” Case Studies in Thermal Engineering 13: 100362. doi:10.1016/j.csite.2018.11.013.
  • Liao, C.-M., and K.-H. Chiu. 2002. “Wind Tunnel Modeling the System Performance of Alternative Evaporative Cooling Pads in Taiwan Region.” Building and Environment 37 (2): 177–187. doi:10.1016/S0360-1323(00)00098-6.
  • Manuwa, S. I., and S. O. Odey. 2012. “Evaluation of Pads and Geometrical Shapes for Constructing Evaporative Cooling System.” Modern Applied Science 6 (6): 45. doi:10.5539/mas.v6n6p45.
  • Martínez, P., J. Ruiz, P. J. Martínez, A. S. Kaiser, and M. Lucas. 2018. “Experimental Study of the Energy and Exergy Performance of a Plastic Mesh Evaporative Pad Used in Air Conditioning Applications.” Applied Thermal Engineering 138: 675–685. doi:10.1016/j.applthermaleng.2018.04.065.
  • Munters. “Evaporative Cooling Pad (model: CELdek® 7090-15).”https://www.munters.com/
  • Ndukwu, M. C., and S. I. Manuwa. 2014. “Review of Research and Application of Evaporative Cooling in Preservation of Fresh Agricultural Produce.” International Journal of Agricultural and Biological Engineering 7 (5): 85–102.
  • Sohani, A., and H. Sayyaadi. 2017. “Design and Retrofit Optimization of the Cellulose Evaporative Cooling Pad Systems at Diverse Climatic Conditions.” Applied Thermal Engineering 123: 1396–1418. doi:10.1016/j.applthermaleng.2017.05.120.
  • Tilahun, S. W. 2010. “Feasibility and Economic Evaluation of Low-cost Evaporative Cooling System in Fruit and Vegetables Storage.” African Journal of Food, Agriculture, Nutrition and Development 10 (8). doi:10.4314/ajfand.v10i8.60885.
  • Xu, J., Y. Li, R. Z. Wang, W. Liu, and P. Zhou. 2015. “Experimental Performance of Evaporative Cooling Pad Systems in Greenhouses in Humid Subtropical Climates.” Applied Energy 138: 291–301. doi:10.1016/j.apenergy.2014.10.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.