815
Views
1
CrossRef citations to date
0
Altmetric
Brief Report

Decarboxylation of oleic acid using iridium catalysis to form products of increased aromatic content compared to ruthenium systems

, &
Pages 2018-2024 | Received 02 Feb 2021, Accepted 03 Sep 2021, Published online: 15 Sep 2021

References

  • Argauer, R. J., and G. R. Landolt. 1972. “Crystalline Zeolite ZSM-5 and Method of Preparing the Same.” 3702886.
  • Berenblyum, A. S., T. A. Podoplelova, R. S. Shamsiev, E. A. Katsman, and V. Y. Danyushevsky. 2011. “On the Mechanism of Catalytic Conversion of Fatty Acids into Hydrocarbons in the Presence of Palladium Catalysts on Alumina.” Petroleum Chemistry 51 (5): 336–341. doi:https://doi.org/10.1134/S0965544111050069.
  • Bezergianni, S., and A. Kalogianni. 2009. “Hydrocracking of Used Cooking Oil for Biofuels Production.” Bioresource Technology 100 (17): 3927–3932. doi:https://doi.org/10.1016/j.biortech.2009.03.039.
  • Biermann, U., U. Bornscheuer, M. A. R. Meier, J. O. Metzger, and H. J. Schafer. 2011. “Oils and Fats as Renewable Raw Materials in Chemistry.” Angewandte Chemie International Edition 50 (17): 3854–3871. doi:https://doi.org/10.1002/anie.201002767.
  • Caulton, K. G., M. G. Thomas, B. A. Sosinsky, and E. L. Muetterties. 1976. “Metal Clusters in Catalysis: Hydrocarbon Reactions.” Proceedings of the National Academy of Sciences 73 (12): 4274–4276. doi:https://doi.org/10.1073/pnas.73.12.4274.
  • Chandrasekaran, S. R., B. Kunwar, B. R. Moser, N. Rajagopalan, and B. K. Sharma. 2015. “Catalytic Thermal Cracking of Postconsumer Waste Plastics to Fuels. 1. Kinetics and Optimization.” Energy & Fuels 29 (9): 6068–6077. doi:https://doi.org/10.1021/acs.energyfuels.5b01083.
  • Chang, -C.-C., and S.-W. Wan. 1947. “China’s Motor Fuels from Tung Oil.” Industrial and Engineering Chemistry 39 (12): 1543–1548. doi:https://doi.org/10.1021/ie50456a011.
  • Crooks, G. R., B. F. G. Johnson, J. Lewis, I. G. Williams, and G. Gamlen. 1969. “Chemistry of Polynuclear Compounds. Part XVII. Some Carboxylate Complexes of Ruthenium and Osmium Carbonyls.” Journal of the Chemical Society A: Inorganic, Physical, Theoretical 2761–2766. doi:https://doi.org/10.1039/j19690002761.
  • Doll, K. M., G. B. Bantchev, E. L. Walter, R. E. Murray, M. Appell, J. C. Lansing, and B. R. Moser. 2017. “Parameters Governing Ruthenium Sawhorse-Based Decarboxylation of Oleic Acid.” Industrial & Engineering Chemistry Research 56: 864–871.
  • Doll, K. M., E. L. Walter, G. B. Bantchev, M. A. Jackson, R. E. Murray, and J. O. Rich. 2016. “Improvement of Lubricant Materials Using Ruthenium Isomerization.” Chemical Engineering Communications 203: 901–907.
  • Dupont, J., P. A. Z. Suarez, M. R. Meneghetti, and S. M. P. Meneghetti. 2009. “Catalytic Production of Biodiesel and Diesel-like Hydrocarbons from Triglycerides.” Energy & Environmental Science 2: 1258–1265.
  • Foglia, T. A., and P. A. Barr. 1976. “Decarbonylation Dehydration of Fatty Acids to Alkenes in the Presence of Transition Metal Complexes.” Journal of the American Oil Chemists’ Society 53: 737–741.
  • Gao, Y., J. Kuncheria, G. P. A. Yap, and R. J. Puddephatt. 1998. “An Efficient Binuclear Catalyst for Decomposition of Formic Acid.” Chemical Communications 34: 2365–2366.
  • Gong, J., X. Ma, and S. Wang. 2007. “Phosgene-free Approaches to Catalytic Synthesis of Diphenyl Carbonate and Its Intermediates.” Applied Catalysis. A, General 316: 1–21.
  • Immer, J. G., M. J. Kelly, and H. H. Lamb. 2010. “Catalytic Reaction Pathways in Liquid-phase Deoxygenation of C18 Free Fatty Acids.” Applied Catalysis. A, General 375: 134–139.
  • Jessop, P. G., T. Ikariya, and R. Noyori. 1999. “Homogeneous Catalysis in Supercritical Fluids.” Chemical Reviews 99: 475–493.
  • Kang G-f, Z.-F. Qin, H.-Q. Zhu, Z.-H. Li, and J.-G. Wang. 2005. “Synthesis of Carbonates via Acid-promoted Alcoholysis of Carbamates.” Journal of Fuel Chemistry and Technology 33: 396–398.
  • Kimmich, R. 2002. “Strange Kinetics, Porous Media, and NMR.” Chemical Physics 284: 253–285.
  • Kloprogge, J. T., L. V. Duong, and R. L. Frost. 2005. “A Review of the Synthesis and Characterisation of Pillared Clays and Related Porous Materials for Cracking of Vegetable Oils to Produce Biofuels.” Environmental Geology 47: 967–981.
  • Knothe, G. 2011. “A Technical Evaluation of Biodiesel from Vegetable Oils Vs. Algae. Will Algae-derived Biodiesel Perform?” Green Chemistry 13: 3048–3065.
  • Knothe, G., K. R. Steidley, B. R. Moser, and K. M. Doll. 2017. “Decarboxylation of Fatty Acids with Triruthenium Dodecacarbonyl: Influence of the Compound Structure and Analysis of the Product Mixtures.” ACS Omega 2: 6473–6480.
  • Kochi, J. K., R. A. Sheldon, and S. S. Lande. 1969. “Rates of Photochemical and Thermal Decarboxylation of Acids by Lead (IV) Tetraacetate.” Tetrahedron 25: 1197–1207.
  • Kraus, G. A. 2014. “Method for Producing Olefins.” 8629312.
  • Kraus, G. A., and S. Riley. 2012. “A Large-Scale Synthesis of alpha-Olefins and alpha-omega-Dienes.” Synthesis 44: 3003–3005.
  • Levine, F., R. V. Kayea Iii, R. Wexler, D. J. Sadvary, C. Melick, and J. La Scala. 2014. “Heats of Combustion of Fatty Acids and Fatty Acid Esters.” Journal of the American Oil Chemists’ Society 91: 235–249.
  • Maetani, S., T. Fukuyama, N. Suzuki, D. Ishihara, and I. Ryu. 2011. “Efficient Iridium-Catalyzed Decarbonylation Reaction of Aliphatic Carboxylic Acids Leading to Internal or Terminal Alkenes.” Organometallics 30: 1389–1394.
  • Meier, M. A. R., J. O. Metzger, and U. S. Schubert. 2007. “Plant Oil Renewable Resources as Green Alternatives in Polymer Science.” Chemical Society Reviews 36: 1788–1802.
  • Moser, B. R., G. Knothe, E. L. Walter, R. E. Murray, R. O. Dunn, and K. M. Doll. 2016. “Analysis and Properties of the Decarboxylation Products of Oleic Acid by Catalytic Triruthenium Dodecacarbonyl.” Energy & Fuels 30: 7443–7451.
  • Murray, R. E., K. M. Doll, and Z. Liu. 2018. “Process for Isomerization and Decarboxylation of Unsaturated Organic Compounds with a Metal Catalyst or Catalyst Precursor.” 9868679.
  • Murray, R. E., E. L. Walter, and K. M. Doll. 2014. “Tandem Isomerization-Decarboxylation for Converting Alkenoic Fatty Acids into Alkenes.” ACS Catalysis 4: 3517–3520.
  • Ohlmann, D. M., N. Tschauder, J.-P. Stockis, K. Gooßen, M. Dierker, and L. J. Gooßen. 2012. “Isomerizing Olefin Metathesis as a Strategy to Access Defined Distributions of Unsaturated Compounds from Fatty Acids.” Journal of the American Chemical Society 134: 13716–13729.
  • Popov, S., and S. Kumar. 2015. “Rapid Hydrothermal Deoxygenation of Oleic Acid over Activated Carbon in a Continuous Flow Process.” Energy and Fuels 29: 3377–3384.
  • Quirino, R. L., A. P. Tavares, A. C. Peres, J. C. Rubim, and P. A. Z. Suarez. 2009. “Studying the Influence of Alumina Catalysts Doped with Tin and Zinc Oxides in the Soybean Oil Pyrolysis Reaction.” Journal of the American Oil Chemists’ Society 86: 167–172.
  • Ranu, B. C., and U. Jana. 1998. “Indium(III) Chloride-promoted Rearrangement of Epoxides: A Selective Synthesis of Substituted Benzylic Aldehydes and Ketones.” Journal of Organic Chemistry 63: 8212–8216.
  • Ray, A., K. Zhu, Y. V. Kissin, A. E. Cherian, G. W. Coates, and A. S. Goldman. 2005. “Dehydrogenation of Aliphatic Polyolefins Catalyzed by Pincer-ligated Iridium Complexes.” Chemical Communications 41: 3388–3390.
  • Salvini, A., P. Frediani, and F. Piacenti. 2000. “Alkene Isomerization by Non-hydridic Phosphine Substituted Ruthenium Carbonyl Carboxylates.” Journal of Molecular Catalysis A, Chemical 159: 185–195.
  • Santillan-Jimenez, E., and M. Crocker. 2012. “Catalytic Deoxygenation of Fatty Acid Derivatives to Hydrocarbon Fuels via Decarboxylation/decarbonylation.” Journal of Chemical Technology and Biotechnology 87: 1041–1050.
  • Smith, K., G. A. El-Hiti, and M. Al-Shamali. 2006. “Rearrangement of Epoxides to Carbonyl Compounds in the Presence of Reusable Acidic Zeolite Catalysts under Mild Conditions.” Catalysis Letters 109: 77–82.
  • Snåre, M., I. Kubičková, P. Mäki-Arvela, K. Eränen, and D. Y. Murzin. 2006. “Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel.” Industrial & Engineering Chemistry Research 45: 5708–5715.
  • Takemura, Y., A. Nakamura, H. Taguchi, and K. Ouchi. 1985. “Catalytic Decarboxylation of Benzoic Acid.” Industrial and Engineering Chemistry Product Research and Development 24: 213–215.
  • Theodorou, V., K. Skobridis, A. G. Tzakos, and V. Ragoussis. 2007. “A Simple Method for the Alkaline Hydrolysis of Esters.” Tetrahedron Letters 48: 8230–8233.
  • Tran, N. H., J. R. Bartlett, G. S. K. Kannangara, A. S. Milev, H. Volk, and M. A. Wilson. 2010. “Catalytic Upgrading of Biorefinery Oil from Micro-algae.” Fuel 89: 265–274.
  • Twaiq, F. A., N. A. M. Zabidi, and S. Bhatia. 1999. “Catalytic Conversion of Palm Oil to Hydrocarbons: Performance of Various Zeolite Catalysts.” Industrial & Engineering Chemistry Research 38: 3230–3237.
  • Vasquez, M. C., E. Eduardo Silva, and E. Fernanto Castillo. 2017. “Hydrotreatment of Vegetable Oils: A Review of the Technologies and Its Developments for Jet Biofuel Production.” Biomass & Bioenergy 105: 197–206.
  • Vozka, P., and G. Kilaz. 2020. “A Review of Aviation Turbine Fuel Chemical Composition-property Relations.” Fuel 268: 117391.
  • Zhao, C., T. Bruck, and J. A. Lercher. 2013. “Catalytic Deoxygenation of Microalgae Oil to Green Hydrocarbons.” Green Chemistry 15: 1720–1739.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.