1,585
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective optimization for selecting sustainable materials with simultaneous consideration of several components in a product

, &
Pages 107-121 | Received 30 Sep 2021, Accepted 16 May 2022, Published online: 06 Jun 2022

References

  • Bi, L., Y. Zuo, F. Tao, et al. 2017. “Energy-Aware Material Selection for Product with Multicomponent under Cloud Environment.” Journal of Computing and Information Science in Engineering 17 (3): 31007. doi:10.1115/1.4035675.
  • Diwekar, U. M. 2020. Introduction to Applied Optimization. Cham: Springer International Publishing (Springer Optimization and Its Applications). doi:10.1007/978-3-030-55404-0.
  • Ehrgott, M., and S. Ruzika. 2008. “Improved ε-constraint Method for Multiobjective Programming.” Journal of Optimization Theory and Applications 138 (3): 375–396. doi:10.1007/s10957-008-9394-2.
  • Girubha, R. J., and S. Vinodh. 2012. “Application of Fuzzy VIKOR and Environmental Impact Analysis for Material Selection of an Automotive Component.” Journal Of Materials&Design. Elsevier Ltd 37: 478–486. doi:10.1016/j.matdes.2012.01.022.
  • Goede, M., M. Stehlin, L. Rafflenbeul, et al. 2009. “Super Light Car-lightweight Construction Thanks to a multi-material Design and Function Integration.” European Transport Research Review 1 (1): 5–10. doi:10.1007/s12544-008-0001-2.
  • Govindan, K., K. Madan Shankar, and D. Kannan. 2015. “Sustainable Material Selection for Construction Industry - A Hybrid Multi Criteria Decision Making Approach.” Renewable and Sustainable Energy Reviews 55: 1274–1288. doi:10.1016/j.rser.2015.07.100.
  • Hosseinijou, S. A., S. Mansour, and M. A. Shirazi. 2014. “Social Life Cycle Assessment for Material Selection: A Case Study of Building Materials.” International Journal of Life Cycle Assessment 19 (3): 620–645. doi:10.1007/s11367-013-0658-1.
  • Jayakrishna, K., S. Vinodh, V. Sakthi Sanghvi, et al. 2016. “Application of GRA for Sustainable Material Selection and Evaluation Using LCA.” Journal of the Institution of Engineers (India): Series C. Springer India 97 (3): 309. doi:10.1007/s40032-016-0283-4.
  • Kucukkoc, I. 2015. “A Mathematical Model and Artificial Bee Colony Algorithm for the Lexicographic Bottleneck mixed-model Assembly Line Balancing Problem.” In Journal of Intelligent Manufacturing, 1–13. Springer.
  • Lutsey, N. 2010. “Review of Technical Literature and Trends Related to Automobile mass-reduction Technology.” Institute of Transportation Studies 1 (3): 1–40. Available at: https://escholarship.org/uc/item/9t04t94w
  • Mayyas, A. 2012a. Expert System Based Approach for Body-in-White Structural Panels Using Numerical Ranking and Sustainability Indices. Clemson University.
  • Mayyas, A., M. A. Omar, and M. T. Hayajneh. 2016. “Eco-material Selection Using Fuzzy TOPSIS Method.” International Journal of Sustainable Engineering 9 (5): 292–304. doi:10.1080/19397038.2016.1153168.
  • Mayyas, A., A. Qattawi, M. Omar, et al. 2012. “Design for Sustainability in Automotive Industry: A Comprehensive Review.” Renewable and Sustainable Energy Reviews 16 (4): 1845–1862. DOI:10.1016/j.rser.2012.01.012.
  • Mayyas, A., Q. Shen, A. Mayyas, et al. 2011. “Using Quality Function Deployment and Analytical Hierarchy Process for Material Selection of Body-In-White.” Materials & Design. Elsevier Ltd 32 (5): 2771–2782. doi:10.1016/j.matdes.2011.01.001.
  • Mayyas, A. T. 2012b. “Life Cycle assessment-based Selection for a Sustainable Lightweight body-in-white Design.” Energy Elsevier 39 (1): 412–425. doi:10.1016/j.energy.2011.12.033.
  • Muñoz, I., J. Rieradevall, X. Domènech, et al. 2006. “Using LCA to Assess Eco-design in the Automotive Sector Case Study of a Polyolefinic Door Panel.” The International Journal of Life Cycle Assessment. Ecomed 11 (5): 323–334. doi:10.1065/lca2005.05.207.
  • Steuer, R. E., and C. A. Piercy. 2005. “A Regression Study of the Number of Efficient Extreme Points in Multiple Objective Linear Programming.” European Journal of Operational Research 162 (2): 484–496. doi:10.1016/j.ejor.2003.09.014.
  • Stoffels, P., J. Kaspar, D. Bähre, et al. 2018. “Integrated Product and Production Engineering Approach - A Tool-Based Method for A Holistic Sustainable Design, Process and Material Selection.” Procedia Manufacturing. Elsevier B.V 21:790–797. doi:10.1016/j.promfg.2018.02.185.
  • Tao, F., L. N. Bi, Y. Zuo, et al. 2016. “A Hybrid Group Leader Algorithm for Green Material Selection with Energy Consideration in Product Design.” CIRP Annals - Manufacturing Technology 65 (1): 9–12. doi:10.1016/j.cirp.2016.04.086.
  • Tharumarajah, A., and P. Koltun. 2010. “Improving Environmental Performance of Magnesium Instrument Panels.” Resources, Conservation and Recycling. Elsevier B.V 54 (12): 1189–1195. doi:10.1016/j.resconrec.2010.03.014.
  • Witik, R. A., J. Payet, V. Michaud, et al. 2011. “Assessing the Life Cycle Costs and Environmental Performance of Lightweight Materials in Automobile Applications.” Composites Part A: Applied Science and Manufacturing. Elsevier Ltd 42 (11): 1694–1709. doi:10.1016/j.compositesa.2011.07.024.
  • Zhou, -C.-C., G.-F. Yin, and X.-B. Hu. 2009. “Multi-objective Optimization of Material Selection for Sustainable Products: Artificial Neural Networks and Genetic Algorithm Approach.” Materials & Design. Elsevier Ltd 30 (4): 1209–1215. doi:10.1016/j.matdes.2008.06.006.
  • Zhou, J., T. Xiahou, and Y. Liu. 2021. “Multi-objective optimization-based TOPSIS Method for Sustainable Product Design under Epistemic Uncertainty.” Applied Soft Computing. Elsevier B.V 98: 106850. doi:10.1016/j.asoc.2020.106850.