713
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the effects of reactant gas flow geometrical shape on the performance of solid oxide fuel cell

Pages 323-332 | Received 03 Dec 2021, Accepted 07 Nov 2022, Published online: 29 Nov 2022

References

  • An, K. 2003. Mechanical Properties and Electrochemical Durability of Solid Oxide Fuel Cells. USA (2003): Virginia Polytechnic Institute and State University.
  • Atkinson, A., S. Barnett, R. J. Gorte, J. T. S. S. Irvine, A. J. Mcevoy, M. Mogensen, S. C. Singhal, and J. Vohs. 2004. “Advanced Anodes for high-temperature Fuel Cells.” Nature Materials 3: 17–27. doi:10.1038/nmat1040.
  • Chan, S. H., K. A. Khor, and Z. T. Xia. 2001. “A Complete Polarization Model of A Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness.” Journal of Power Sources 93: 130–140. doi:10.1016/S0378-7753(00)00556-5.
  • Cheddie, D. F. 2013. “Modeling of ammonia-fed Solid Oxide Fuel Cells.” Materials and Processes for Energy: Communicating Current Research and Technological Developments 504–511.
  • Choudhury, A., H. Chandra, and A. Arora. 2013. “Application of Solid Oxide Fuel Cell Technology for Power Generation - A Review.” Renewable and Sustainable Energy Reviews 20: 430–442. doi:10.1016/j.rser.2012.11.031.
  • El Haj Assad, M., M. Alhuyi Nazari, and M. A. Rosen. 2021. “Applications of Renewable Energy Sources.” Design and Performance Optimization of Renewable Energy Systems 1–15. doi:10.1016/B978-0-12-821602-6.00001-8.
  • Etemadi, A., S. Ghorbani, M. Masoumpour, and M. Dadkhah. 2016. “The Numerical Analysis of an anode-supported high-temperature DIR- PSOFC Operating Conditions with considering the Maximum Allowable Temperature Difference.” Journal of Heat and Mass Transfer Research 1 (2): 15–25.
  • Fang, X., J. Zhu, and Z. Lin. 2018. “Effects of Electrode Composition and Thickness on the Mechanical Performance of a Solid Oxide Fuel Cell.” Energies 11 (1735): 1–13. doi:10.3390/en11071735.
  • Fu, Q., Z. Li, W. Wei, F. Liu, X. Xu, and Z. Liu. 2021. “Performance Enhancement of Planar Solid Oxide Fuel Cell Using a Novel Interconnector Design.” International Journal of Hydrogen Energy 46 (41): 21634–21656. doi:10.1016/j.ijhydene.2021.04.001.
  • Ilbas, M., B. Kumuk, M. A. M. A. Alemu, and B. Arslan. 2020. “Numerical Investigation of a Direct Ammonia Tubular Solid Oxide Fuel Cell in Comparison with Hydrogen.” International Journal of Hydrogen Energy 45 (60): 35108–35117. doi:10.1016/j.ijhydene.2020.04.060.
  • Jha, V., V. K. Surasani, and B. Krishnamurthy. 2021. “Three-dimensional Mathematical Model to Study Effects of Geometrical Parameters on the Performance of Solid Oxide Fuel Cell.” Journal of Electrochemical Science and Engineering 11 (4): 291–304. doi:10.5599/jese.1097.
  • Jiang, W., R. Fang, J. A. Khan, and R. A. Dougal. 2006. “Parameter Setting and Analysis of a Dynamic Tubular SOFC Model.” Journal of Power Sources 162 (1): 316–326. doi:10.1016/j.jpowsour.2006.06.086.
  • Kakaç, S., A. Pramuanjaroenkij, and X. Y. Zhou. 2007. “A Review of Numerical Modeling of Solid Oxide Fuel Cells.” International Journal of Hydrogen Energy 32, 761–786. doi:10.1016/j.ijhydene.2006.11.028.
  • Lan, R., J. T. S. Irvine, and S. Tao. 2012. “Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials.” International Journal of Hydrogen Energy 37 (2): 1482–1494. doi:10.1016/j.ijhydene.2011.10.004.
  • Lee, H. L., N. G. Han, M. S. Kim, Y. S. Kim, and D. K. Kim. 2022. “Studies on the Effect of Flow Configuration on the Temperature Distribution and Performance in a High Current Density Region of Solid Oxide Fuel Cell.” Applied Thermal Engineering 206 (December 2021): 118120. doi:10.1016/j.applthermaleng.2022.118120.
  • Mench, M. M. 2008. “Fuel Cell Engines.” Fuel Cell Engines. doi:10.1002/9780470209769.
  • Minh, N. Q. 2004. “Solid Oxide Fuel Cell Technology - Features and Applications.” Solid State Ionics 174 (1–4): 271–277. doi:10.1016/j.ssi.2004.07.042.
  • Molla, A., and M. Ilbas. 2020. “Direct Ammonia Fueled Solid Oxide Fuel Cells: A Comprehensive Review on Challenges, Opportunities, and Future Outlooks.” International Journal of Energy Technology 2 (June): 70–91. doi:10.32438/IJET.203011.
  • Ricardo De la Torre García, U. O. T. I. 2011. “Production of Micro-Tubular Solid Oxide Fuel Cells.” University of Trento, Italy, April.
  • S.C Singhal. 2000. “Advances in Solid Oxide Fuel Cell Technology.” Solid State Ionics. 135 (1–4): 305–313. www.elsevier.com/locate/ssi-10.1016/S0167-2738(00)00452-5
  • Siddiqui, O., and I. Dincer. 2018. “A Review and Comparative Assessment of Direct Ammonia Fuel Cells.” Thermal Science and Engineering Progress 5 (August 2017): 568–578. doi:10.1016/j.tsep.2018.02.011.
  • Singhal, S. C. 2002. “Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications.” Solid State Ionics 152153: 405–410. doi:10.1016/S0167-2738(02)00349-1.
  • Singhal, S. C., and K. Kendall. 2003. “High-temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications.” High-temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications. doi:10.1016/B978-1-85617-387-2.X5016-8.
  • Su, S., X. Gao, Q. Zhang, W. Kong, and D. Chen. 2015. “Anode-versus cathode-supported Solid Oxide Fuel Cell: Effect of Cell Design on the Stack Performance.” International Journal of Electrochemical Science.
  • Su, S., Q. Zhang, X. Gao, V. Periasamy, and W. Kong. 2016. “Effects of Changes in Solid Oxide Fuel Cell Electrode Thickness on Ohmic and Concentration Polarizations.” International Journal of Hydrogen Energy 41 (36): 16181–16190. doi:10.1016/j.ijhydene.2016.04.221.
  • Walther, D. C., and J. Ahn. 2011. “Advances and Challenges in the Development of power-generation Systems at Small Scales.” Progress in Energy and Combustion Science 37: 583–610. doi:10.1016/j.pecs.2010.12.002.
  • Wojcik, A., H. Middleton, I. Damopoulos, J. Van Herle, and J. Van. 2003. “Ammonia as a Fuel in Solid Oxide Fuel Cells.” Journal of Power Sources 118: 342–348. doi:10.1016/S0378-7753(03)00083-1.
  • Xiurong Fang, J. Z., Z. L, and F. Cell. 2018. Effects of Electrode Composition and Thickness on. doi:10.3390/en11071735.
  • Yuan, P., and S. F. Liu. 2022. “Effect of Air Flow Rate Distribution and Flowing Direction on the Thermal Stress of a Solid Oxide Fuel Cell Stack with cross-flow Configuration.” International Journal of Hydrogen Energy 47 (10): 6799–6810. doi:10.1016/j.ijhydene.2021.12.014.
  • Yu, Z., S. Liu, F. Zheng, and Y. Ding. 2016. “Effects of the Different Supporting Structures on Tubular Solid Oxide Fuel Cell Performance.” International Journal of Electrochemical Science 11 (12): 10210–10222. doi:10.20964/2016.12.53.