696
Views
0
CrossRef citations to date
0
Altmetric
Articles

Development and performance evaluation of a minimum input model calibration methodology for residential buildings

, & ORCID Icon
Pages 680-704 | Received 14 Nov 2022, Accepted 16 Mar 2023, Published online: 12 Apr 2023

References

  • Albatayneh, A. 2021. “Sensitivity Analysis Optimisation of Building Envelope Parameters in a Sub-Humid Mediterranean Climate Zone.” Energy Exploration and Exploitation 39 (6): 2080–2102. doi:10.1177/01445987211020432.
  • Ambrose, M., and M. Syme. 2015. “House Energy Efficiency Inspections Project Final Report.” pp. 1–72.
  • ASHRAE. 2014. “Measurement of energy and demand savings. Guideline 14.”
  • ASHRAE. 2019. “ANSI/ASHRAE Standard Standard 90.1 – Energy Standard for Buildings Except Low-Rise Residential Buildings.” Atlanta, GA.
  • Australian Building Codes Board. 2019a. “National Construction Code – Volume One.”
  • Australian Building Codes Board. 2019b. “Australia Climate zone map.”
  • Avanzini, M., M. D. Pinheiro, R. Gomes, and C. Rolim. 2022. “Energy Retrofit as an Answer to Public Health Costs of Fuel Poverty in Lisbon Social Housing.” Energy Policy 160 (October 2021). doi:10.1016/j.enpol.2021.112658.
  • Baba, F. M., H. Ge, R. Zmeureanu, and L. (Leon) Wang. 2022. “Calibration of Building Model Based on Indoor Temperature for Overheating Assessment Using Genetic Algorithm: Methodology, Evaluation Criteria, and Case Study.” Building and Environment 207 (August 2021). doi:10.1016/j.buildenv.2021.108518.
  • Beagon, P., F. Boland, and J. O’Donnell. Jul. 2018. “Quantitative Evaluation of Deep Retrofitted Social Housing Using Metered gas Data.” Energy and Buildings 170: 242–256. doi:10.1016/j.enbuild.2018.04.022.
  • Bertagnolio, S. 2012. Evidence-based Model Calibration for Efficient Building Energy Services. Liège: University of Liège.
  • Broderick, Á, M. Byrne, S. Armstrong, J. Sheahan, and A. M. Coggins. Sep. 2017. “A Pre and Post Evaluation of Indoor Air Quality, Ventilation, and Thermal Comfort in Retrofitted Co-Operative Social Housing.” Building and Environment 122: 126–133. doi:10.1016/j.buildenv.2017.05.020.
  • Burhenne, S., D. Jacob, and G. P. Henze. 2011. “Sampling Based on Sobol’ Sequences for Monte Carlo Techniques Applied to Building Simulations.” in 12th Conference of International Building Performance Simulation Association, pp. 14–16.
  • Calderón, C., and M. R. Beltrán. Aug. 2018. “Effects of Fabric Retrofit Insulation in a UK High-Rise Social Housing Building on Temperature Take-Back.” Energy and Buildings 173: 470–488. doi:10.1016/j.enbuild.2018.05.046.
  • Calì, D., T. Osterhage, R. Streblow, and D. Müller. Sep. 2016. “Energy Performance Gap in Refurbished German Dwellings: Lesson Learned from a Field Test.” Energy and Buildings 127: 1146–1158. doi:10.1016/j.enbuild.2016.05.020.
  • Campolongo, F., J. Cariboni, and A. Saltelli. 2007. “An Effective Screening Design for Sensitivity Analysis of Large Models.” Environmental Modelling and Software 22 (10): 1509–1518. doi:10.1016/j.envsoft.2006.10.004.
  • Carratt, A., G. Kokogiannakis, and D. Daly. Aug. 01, 2020. “A Critical Review of Methods for the Performance Evaluation of Passive Thermal Retrofits in Residential Buildings.” Journal of Cleaner Production 263. doi:10.1016/j.jclepro.2020.121408.
  • Chong, A., Y. Gu, and H. Jia. 2021. “Calibrating Building Energy Simulation Models: A Review of the Basics to Guide Future Work.” Energy and Buildings 253. doi:10.1016/j.enbuild.2021.111533.
  • CIBSE. 2015. Environmental Design: CIBSE Guide A. 8th ed. London: The Chartered Institution of Building Services Engineers.
  • Clarke, J. 2001. Energy Simulation in Building Design. 2nd ed. Oxford: Butterworth-Heinemann. doi:10.4324/9780080505640.
  • Coakley, D., P. Raftery, and M. Keane. 2014. “A Review of Methods to Match Building Energy Simulation Models to Measured Data.” Renewable and Sustainable Energy Reviews 37: 123–141.
  • Cornick, S. M., and D. M. Sander. 1995. “A Simplified Energy Model for Analysis of Building Envelope Thermal Characteristics.” in Thermal performance of the exterior envelopes of buildings, 687–696.
  • Cozza, S., J. Chambers, A. Brambilla, and M. K. Patel. Oct. 2021. “In Search of Optimal Consumption: A Review of Causes and Solutions to the Energy Performance Gap in Residential Buildings.” Energy and Buildings 249: 111253. doi:10.1016/j.enbuild.2021.111253.
  • Daly, D., T. Harada, M. Tibbs, P. Cooper, G. Waitt, and F. Tartarini. Oct. 2021. “Indoor Temperatures and Energy use in NSW Social Housing.” Energy and Buildings 249: 111240. doi:10.1016/j.enbuild.2021.111240.
  • de Wilde, P. 2014. “The Gap Between Predicted and Measured Energy Performance of Buildings: A Framework for Investigation.” Automation in Construction 41: 40–49. doi:10.1016/j.autcon.2014.02.009.
  • Edeisy, M., and C. Cecere. Jan. 2017. “Envelope Retrofit in Hot Arid Climates.” Procedia Environmental Sciences 38: 264–273. doi:10.1016/j.proenv.2017.03.075.
  • Efficiency Valuation Organization. 2010. “International Performance Measurement and Verification Protocol: Concepts and Options for Determining Energy and Water Savings.”
  • Egan, J., D. Finn, P. H. Deogene Soares, V. A. Rocha Baumann, R. Aghamolaei, P. Beagon, O. Neu, F. Pallonetto, and J. O’Donnell. Apr. 2018. “Definition of a Useful Minimal-Set of Accurately-Specified Input Data for Building Energy Performance Simulation.” Energy and Buildings 165: 172–183. doi:10.1016/j.enbuild.2018.01.012.
  • Elsharkawy, H., and P. Rutherford. 2018. “Energy-efficient Retrofit of Social Housing in the UK: Lessons Learned from a Community Energy Saving Programme (CESP) in Nottingham.” Energy and Buildings 172: 295–306. doi:10.1016/j.enbuild.2018.04.067.
  • Energy Consult Pty Ltd. 2015. “Residential Energy Baseline Study: Australia.”
  • Fumo, N., M. J. Torres, and K. Broomfield. 2021. “A Multiple Regression Approach for Calibration of Residential Building Energy Models.” Journal of Building Engineering 43 (June). doi:10.1016/j.jobe.2021.102874.
  • Geard, D. 2011. “An Empirical Validation of the House Energy Rating Software AccuRate for Residential Buildings in Cool Temperate Climates of Australia.”
  • Hong, T., and S. H. Lee. 2019. “Integrating Physics-Based Models with Sensor Data: An Inverse Modeling Approach.” Building and Environment 154: 23–31. doi:10.1016/j.buildenv.2019.03.006.
  • James, M. 2022 “RapidRate.” CSIRO. https://ahd.csiro.au/rapidrate/ (accessed Oct. 06, 2022).
  • Jamian, J. J., M. N. Abdullah, H. Mokhlis, M. W. Mustafa, and A. H. A. Bakar. 2014. “Global Particle Swarm Optimization for High Dimension Numerical Functions Analysis.” Journal of Applied Mathematics 2014. doi:10.1155/2014/329193.
  • Joint Research Centre of the European Commission. 2004. “SIMLAB Version 2.2 Simulation Environment for Uncertainty and Sensitivity Analysis.” https://ec.europa.eu/jrc/en/samo/simlab.
  • Kang, Wook, Yong-Hun Lee, Chun-Won Kang, Woo-Yang Chung, Hui-Lan Xu, and Junji Matsumura. 2011. “Using the Inverse Method to Estimate the Solar Absorptivity and Emissivity of Wood Exposed to the Outdoor Environment.” Journal of the Faculty of Agriculture, Kyushu University 56. doi:10.5109/19542.
  • Khoury, J., Z. Alameddine, and P. Hollmuller. Sep. 2017. “Understanding and Bridging the Energy Performance Gap in Building Retrofit.” Energy Procedia 122: 217–222. doi:10.1016/j.egypro.2017.07.348.
  • Kim, Y. J., and C. S. Park. 2016. “Stepwise Deterministic and Stochastic Calibration of an Energy Simulation Model for an Existing Building.” Energy and Buildings 133: 455–468. doi:10.1016/j.enbuild.2016.10.009.
  • Li, K., B. Lloyd, X. J. Liang, and Y. M. Wei. 2014. “Energy Poor or Fuel Poor: What are the Differences?” Energy Policy 68: 476–481. doi:10.1016/j.enpol.2013.11.012.
  • Li, F., A. Smith, P. Biddulph, I. Hamilton, R. Lowe, A. Mavrogianni, E. Oikonomou, et al. Mar. 2015. “Solid-Wall U-Values: Heat Flux Measurements Compared with Standard Assumptions.” Building Research & Information 43 (2): 238–252. doi:10.1080/09613218.2014.967977.
  • Liang, Y., Y. Pan, X. Yuan, Y. Yang, L. Fu, J. Li, T. Sun, Z. Huang, and R. Kosonen. 2022. “Assessment of Operational Carbon Emission Reduction of Energy Conservation Measures for Commercial Buildings: Model Development.” Energy and Buildings 268. doi:10.1016/j.enbuild.2022.112189.
  • Lou, Y., Y. Yang, Y. Ye, W. Zuo, and J. Wang. 2021. “The Effect of Building Retrofit Measures on CO2 Emission Reduction – A Case Study with U.S. Medium Office Buildings.” Energy and Buildings 253. doi:10.1016/j.enbuild.2021.111514.
  • Lozinsky, C. H., and M. F. Touchie. 2018. “Improving Energy Model Calibration of Multi-Unit Residential Buildings Through Component Air Infiltration Testing.” Building and Environment 134 (February): 218–229. doi:10.1016/j.buildenv.2018.02.040.
  • MacDonald, I., and P. Strachan. 2001. “Practical Application of Uncertainty Analysis.” Energy and Buildings 33 (3): 219–227. doi:10.1016/S0378-7788(00)00085-2.
  • McLauchlan, C., L. L. Gomis, and P. Cooper. Sep. 2017. “Impact of a Pilot Draught Sealing Program on Public Housing Air Permeability.” Energy Procedia 121: 18–25. doi:10.1016/j.egypro.2017.08.003.
  • Menberg, K., Y. Heo, and R. Choudhary. 2016. “Sensitivity Analysis Methods for Building Energy Models: Comparing Computational Costs and Extractable Information.” Energy and Buildings 133: 433–445. doi:10.1016/j.enbuild.2016.10.005.
  • Monari, F., and P. Strachan. 2017. “Characterization of an Airflow Network Model by Sensitivity Analysis: Parameter Screening, Fixing, Prioritizing and Mapping.” Journal of Building Performance Simulation 10 (1): 17–36. doi:10.1080/19401493.2015.1110621.
  • Ndiritu, J. 2009. “A Comparison of Automatic and Manual Calibration Using the Pitman Model.” Physics and Chemistry of the Earth 34 (13–16): 729–740. doi:10.1016/j.pce.2009.06.002.
  • Nejat, P., F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. Muhd. Mar. 2015. “A Global Review of Energy Consumption, CO2 Emissions and Policy in the Residential Sector (With an Overview of the Top Ten CO2 Emitting Countries).” Renewable and Sustainable Energy Reviews 43: 843–862. doi:10.1016/j.rser.2014.11.066.
  • Nussbaumer, T., R. Bundi, C. Tanner, and H. Muehlebach. 2005. “Thermal Analysis of a Wooden Door System with Integrated Vacuum Insulation Panels.” Energy and Buildings 37 (11 SPEC. ISS.): 1107–1113. doi:10.1016/j.enbuild.2004.11.002.
  • O’ Donovan, A., P. D. O’ Sullivan, and M. D. Murphy. 2019. “Predicting Air Temperatures in a Naturally Ventilated Nearly Zero Energy Building: Calibration, Validation, Analysis and Approaches.” Applied Energy 250 (December 2018): 991–1010. doi:10.1016/j.apenergy.2019.04.082.
  • Paleari, L., E. Movedi, M. Zoli, A. Burato, I. Cecconi, J. Errahouly, E. Pecollo, C. Sorvillo, and R. Confalonieri. Sep. 2021. “Sensitivity Analysis Using Morris: Just Screening or an Effective Ranking Method?” Ecological Modelling 455. doi:10.1016/j.ecolmodel.2021.109648.
  • Paliouras, P., N. Matzaflaras, R. H. Peuhkuri, and J. Kolarik. Nov. 2015. “Using Measured Indoor Environment Parameters for Calibration of Building Simulation Model- A Passive House Case Study.” Energy Procedia 78: 1227–1232. doi:10.1016/j.egypro.2015.11.209.
  • Raftery, P., M. Keane, and J. O’Donnell. Sep. 2011. “Calibrating Whole Building Energy Models: An Evidence-Based Methodology.” Energy and Buildings 43 (9): 2356–2364. doi:10.1016/j.enbuild.2011.05.020.
  • Reddy, T. A., I. Maor, and C. Panjapornpon. 2007a. “Calibrating Detailed Building Energy Simulation Programs with Measured Data—Part I: General Methodology (RP-1051).” HVAC and R Research 13 (2): 221–241. doi:10.1080/10789669.2007.10390952.
  • Reddy, T. A., I. Maor, and C. Panjapornpon. 2007b. “Calibrating Detailed Building Energy Simulation Programs with Measured Data—Part II: Application to Three Case Study Office Buildings (RP-1051).” HVAC and R Research 13 (2): 243–265. doi:10.1080/10789669.2007.10390953.
  • Robati, M., G. Kokogiannakis, and T. J. McCarthy. 2017. “Impact of Structural Design Solutions on the Energy and Thermal Performance of an Australian Office Building.” Building and Environment 124: 258–282. doi:10.1016/j.buildenv.2017.08.018.
  • Roberti, F., U. F. Oberegger, and A. Gasparella. Dec. 2015. “Calibrating Historic Building Energy Models to Hourly Indoor Air and Surface Temperatures: Methodology and Case Study.” Energy and Buildings 108: 236–243. doi:10.1016/j.enbuild.2015.09.010.
  • Royapoor, M., and T. Roskilly. May 2015. “Building Model Calibration Using Energy and Environmental Data.” Energy and Buildings 94: 109–120. doi:10.1016/j.enbuild.2015.02.050.
  • Ruparathna, R., K. Hewage, and R. Sadiq. 2016. “Improving the Energy Efficiency of the Existing Building Stock: A Critical Review of Commercial and Institutional Buildings.” Renewable and Sustainable Energy Reviews 53: 1032–1045. doi:10.1016/j.rser.2015.09.084.
  • Saltelli, A. 2004. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models (Google EBook).
  • Sansregret, S., K. Lavigne, A. Daoud, and L.-A. Leclaire. 2014. “ExCalibBEM: Tool Development to Calibrate Building Energy Models.” in Proceedings of the 8th eSim Conference. [Online]. Available: http://www.ibpsa.org/proceedings/eSimPapers/2014/7A.5.pdf.
  • Sarrazin, F., F. Pianosi, and T. Wagener. 2016. “Global Sensitivity Analysis of Environmental Models: Convergence and Validation.” Environmental Modelling and Software 79: 135–152. doi:10.1016/j.envsoft.2016.02.005.
  • Singh, R., I. J. Lazarus, and V. V. N. Kishore. 2016. “Uncertainty and Sensitivity Analyses of Energy and Visual Performances of Office Building with External Venetian Blind Shading in Hot-Dry Climate.” Applied Energy 184: 155–170. doi:10.1016/j.apenergy.2016.10.007.
  • Tabares-Velasco, P. C. 2013. “Time Step Considerations when Simulating Dynamic Behavior of High Performance Homes.” in Thermal Performance of the Exterior Envelopes of Whole Buildings XII International Conference. [Online]. Available: https://www.osti.gov/biblio/1357415.
  • US Department of Energy. 2009. “M&V Guidelines: Measurement and Verification for fedeRal Energy Project. Version 3.0.”
  • US Department of Energy. 2018. “EnergyPlusTM Version 22.1.0 Documentation, Engineering Reference.”
  • US Department of Energy. 2021. “EnergyPlus Version 9.6.0 Documentation, Input Output Reference.” The Encyclopedic Reference to EnergyPlus Input and Output, no. c. pp. 1996–2016.
  • US Department of Energy. n.d. “EnergyPlus 9.3.”
  • Vakalis, D., E. Diaz Lozano Patino, T. Opher, M. F. Touchie, K. Burrows, H. L. MacLean, and J. A. Siegel. 2021. “Quantifying Thermal Comfort and Carbon Savings from Energy-Retrofits in Social Housing.” Energy and Buildings 241. doi:10.1016/j.enbuild.2021.110950.
  • Wentworth, M. T., R. C. Smith, and H. T. Banks. 2016. “Parameter Selection and Verification Techniques Based on Global Sensitivity Analysis Illustrated for an HIV Model.” SIAM-ASA Journal on Uncertainty Quantification 4 (1): 266–297. doi:10.1137/15M1008245.
  • Westphal, F. S., and R. Lamberts. 2005 . “Building Simulation Calibration Using Sensitivity Analysis.” in Ninth International IBPSA Conference Montréal, Canada August 15-18, 2005, pp. 1331–1338. [Online]. Available: http://www.ibpsa.org/proceedings/BS2005/BS05_1331_1338.pdf.
  • Wetter, M. 2001. “A Generic Optimization Program.” in Proc. IBPSA’s Building Simulation 2001 Conference, August 13-15.
  • Xu, K. 2012. “Assessing the Minimum Instrumentation to Well Tune Existing Medium Sized Office Building Energy Models.” Doctor of Philosophy, Pennsylvania State University.
  • Zhang, Y. 2009. “‘Parallel’ Energyplus and the Development of a Parametric Analysis Tool.” IBPSA 2009 – International Building Performance Simulation Association 2009, no. September 2010, pp. 1382–1388.
  • Zou, P., X. Xu, J. Sanjayan, and J. Wang. 2018. “Review of 10 Years Research on Building Energy Performance gap: Life-Cycle and Stakeholder Perspectives.” Energy and Buildings 178: 165–181. doi:10.1016/j.enbuild.2018.08.040.