4,739
Views
25
CrossRef citations to date
0
Altmetric
Reports

Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples

&
Pages 419-429 | Received 16 Sep 2016, Accepted 27 Jan 2017, Published online: 10 Mar 2017

References

  • Popkov M, Mage RG, Alexander CB, Thundivalappil S, Barbas Iii CF, Rader C. Rabbit immune repertoires as sources for therapeutic monoclonal antibodies: the impact of kappa allotype-correlated variation in cysteine content on antibody libraries selected by phage display. J Mol Biol 2003; 325:325-35; PMID:12488098; http://dx.doi.org/10.1016/S0022-2836(02)01232-9
  • Spieker-Polet H, Sethupathi P, Yam PC, Knight KL. Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc Natl Acad Sci USA 1995; 92:9348-52; PMID:7568130; http://dx.doi.org/10.1073/pnas.92.20.9348
  • Cheung WC, Beausoleil SA, Zhang X, Sato S, Schieferl SM, Wieler JS, Beaudet JG, Ramenani RK, Popova L, Comb MJ, et al. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat Biotechnol 2012; 30:447-52; PMID:22446692; http://dx.doi.org/10.1038/nbt.2167
  • Rader C, Ritter G, Nathan S, Elia M, Gout I, Jungbluth AA, Cohen LS, Welt S, Old LJ, Barbas CF. The rabbit antibody repertoire as a novel source for the generation of therapeutic human antibodies. J Biol Chem 2000; 275:13668-76; PMID:10788485; http://dx.doi.org/10.1074/jbc.275.18.13668
  • Rossi S, Laurino L, Furlanetto A, Chinellato S, Orvieto E, Canal F, Facchetti F, Dei Tos AP. Rabbit monoclonal antibodies: a comparative study between a novel category of immunoreagents and the corresponding mouse monoclonal antibodies. Am J Clin Pathol 2005; 124:295-302; PMID:16040303; http://dx.doi.org/10.1309/NR8HN08GDPVEMU08
  • Zhang Y-F, Phung Y, Gao W, Kawa S, Hassan R, Pastan I, Ho M. New high affinity monoclonal antibodies recognize non-overlapping epitopes on mesothelin for monitoring and treating mesothelioma. Sci Rep 2015; 5:9928; PMID:25996440; http://dx.doi.org/10.1038/srep09928
  • Bendell JC, Fakih M, Infante JR, Bajor DL, Cristea MC, Tremblay T, Trifan OC, Vonderheide RH. Phase 1 study to evaluate the safety and tolerability of the CD40 agonistic monoclonal antibody APX005M in subjects with solid tumors. ASCO annual meeting; J Clin Oncol 2016; 34 (suppl; abstr TPS3110); http://meetinglibrary.asco.org/content/164672-176
  • Harding FA, Stickler MM, Razo J, DuBridge R. The immunogenicity of humanized and fully human antibodies. mAbs 2010; 2:256-65; PMID:20400861; http://dx.doi.org/10.4161/mabs.2.3.11641
  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321:522-5; PMID:3713831; http://dx.doi.org/10.1038/321522a0
  • Verhoeyen M, Milstein C, Winter G. Reshaping human antibodies: grafting an antilysozyme activity. Science 1988; 239:1534-6; PMID:2451287; http://dx.doi.org/10.1126/science.2451287
  • Williams D, Matthews D, Jones T. Humanising antibodies by CDR grafting. In: Kontermann R, Dübel S, eds. Springer Berlin Heidelberg: Antibody Engineering, 2010:319-39; http://dx.doi.org/10.1007/978-3-642-01144-3_21
  • Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 1989; 86:10029-33; PMID:2513570; http://dx.doi.org/10.1073/pnas.86.24.10029
  • Kashmiri SVS, De Pascalis R, Gonzales NR, Schlom J. SDR grafting—a new approach to antibody humanization. Methods 2005; 36:25-34; PMID:15848072; http://dx.doi.org/10.1016/j.ymeth.2005.01.003
  • Rader C, Cheresh DA, Barbas CF. A phage display approach for rapid antibody humanization: designed combinatorial V gene libraries. Proc Natl Acad Sci USA 1998; 95:8910-5; PMID:9671778; http://dx.doi.org/10.1073/pnas.95.15.8910
  • Jones T, Crompton L, Carr F, Baker M. Deimmunization of monoclonal antibodies. In: Dimitrov AS, ed. Therapeutic Antibodies: Humana Press, 2009:405-23; PMID:19252848; http://dx.doi.org/10.1007/978-1-59745-554-1_21
  • Alard P, Desmet J, Lasters I. In silico de-immunization. In: Kontermann R, Dübel S, eds. Springer Berlin Heidelberg: Antibody Engineering, 2010:369-76; http://dx.doi.org/10.1007/978-3-642-01144-3_24
  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 1992; 89:4285-9; PMID:1350088; http://dx.doi.org/10.1073/pnas.89.10.4285
  • Ismael G, Hegg R, Muehlbauer S, Heinzmann D, Lum B, Kim S-B, Pienkowski T, Lichinitser M, Semiglazov V, Melichar B, et al. Subcutaneous versus intravenous administration of (neo)adjuvant trastuzumab in patients with HER2-positive, clinical stage I–III breast cancer (HannaH study): a phase 3, open-label, multicentre, randomised trial. Lancet Oncol 2012; 13:869-78; PMID:22884505; http://dx.doi.org/10.1016/S1470-2045(12)70329-7
  • Jackisch C, Kim S-B, Semiglazov V, Melichar B, Pivot X, Hillenbach C, Stroyakovskiy D, Lum BL, Elliott R, Weber HA, et al. Subcutaneous versus intravenous formulation of trastuzumab for HER2-positive early breast cancer: updated results from the phase III HannaH study. Ann Oncol 2015; 26:320-5; PMID:25403587; http://dx.doi.org/10.1093/annonc/mdu524
  • Yu Y, Lee P, Ke Y, Zhang Y, Yu Q, Lee J, Li M, Song J, Chen J, Dai J, et al. A humanized anti-VEGF rabbit monoclonal antibody inhibits angiogenesis and blocks tumor growth in xenograft models. PLoS One 2010; 5:e9072; PMID:20140208; http://dx.doi.org/10.1371/journal.pone.0009072
  • Lavinder JJ, Hoi KH, Reddy ST, Wine Y, Georgiou G. Systematic characterization and comparative analysis of the rabbit immunoglobulin repertoire. PLoS One 2014; 9:e101322; PMID:24978027; http://dx.doi.org/10.1371/journal.pone.0101322
  • Knight KL, Becker RS. Molecular basis of the allelic inheritance of rabbit immunoglobulin VH allotypes: Implications for the generation of antibody diversity. Cell 1990; 60:963-70; PMID:2317867; http://dx.doi.org/10.1016/0092-8674(90)90344-E
  • Mage R. Rabbit immune system. In: Vohr H-W, ed. Encyclopedic Reference of Immunot: Springer Berlin Heidelberg, 2005:545-9; http://dx.doi.org/10.1007/3-540-27806-0_1248
  • Wu TT, Kabat EA. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 1970; 132:211-50; PMID:5508247; http://dx.doi.org/10.1084/jem.132.2.211
  • Kabat EA, Te Wu T, Perry HM, Gottesman KS, Foeller C. Sequences of proteins of immunological interest. Diane Publ Company, 1992; ISBN: 9780941375658.
  • Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 1987; 196:901-17; PMID:3681981; http://dx.doi.org/10.1016/0022-2836(87)90412-8
  • Lefranc M-P, Pommié C, Ruiz M, Giudicelli V, Foulquier E, Truong L, Thouvenin-Contet V, Lefranc G. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 2003; 27:55-77; PMID:12477501; http://dx.doi.org/10.1016/S0145-305X(02)00039-3
  • Padlan EA, Abergel C, Tipper JP. Identification of specificity-determining residues in antibodies. FASEB J 1995; 9:133-9. PMID:7821752.
  • Kunik V, Peters B, Ofran Y. Structural consensus among antibodies defines the antigen binding site. PLoS Comput Biol 2012; 8:e1002388; PMID:22383868; http://dx.doi.org/10.1371/journal.pcbi.1002388
  • Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol 2013; 4:302; PMID:24115948; http://dx.doi.org/10.3389/fimmu.2013.00302
  • Tramontano A, Chothia C, Lesk AM. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J Mol Biol 1990; 215:175-82; PMID:2118959; http://dx.doi.org/10.1016/S0022-2836(05)80102-0
  • Xiang J, Sha Y, Jia Z, Prasad L, Delbaere LTJ. Framework residues 71 and 93 of the chimeric B72.3 antibody are major determinants of the conformation of heavy-chain hypervariable loops. J Mol Biol 1995; 253:385-90; PMID:7473721; http://dx.doi.org/10.1006/jmbi.1995.0560
  • Borras L, Gunde T, Tietz J, Bauer U, Hulmann-Cottier V, Grimshaw JPA, Urech DM. Generic approach for the generation of stable humanized single-chain fv fragments from rabbit monoclonal antibodies. J Biol Chem 2010; 285:9054-66; PMID:20056614; http://dx.doi.org/10.1074/jbc.M109.072876
  • Pastan I, Ho M. Recombinant immunotoxins for treating cancer. In: Kontermann R, Dubel S, eds. Antibody Engineering. Berlin-Heidelberg: Springer-Verlag, 2010:127-46; http://dx.doi.org/10.1007/978-3-642-01147-4
  • Haidar JN, Yuan Q-A, Zeng L, Snavely M, Luna X, Zhang H, Zhu W, Ludwig DL, Zhu Z. A universal combinatorial design of antibody framework to graft distinct CDR sequences: A bioinformatics approach. Proteins: Struct Funct Bioinform 2012; 80:896-912; PMID:22180101; http://dx.doi.org/10.1002/prot.23246
  • Raghunathan G, Smart J, Williams J, Almagro JC. Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens. J Mol Recognit 2012; 25:103-13; PMID:22407974; http://dx.doi.org/10.1002/jmr.2158
  • MacCallum RM, Martin ACR, Thornton JM. Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol 1996; 262:732-45; PMID:8876650; http://dx.doi.org/10.1006/jmbi.1996.0548
  • Jones TD, Carter PJ, Plückthun A, Vásquez M, Holgate RGE, Hötzel I, Popplewell AG, Parren PWHI, Enzelberger M, Rademaker HJ, et al. The INNs and outs of antibody nonproprietary names. mAbs 2016; 8:1-9; PMID:26716992; http://dx.doi.org/10.1080/19420862.2015.1114320
  • Roque-Navarro L, Mateo C, Lombardero J, Mustelier G, Fernández A, Sosa K, Morrison SL, Pérez R. Humanization of predicted T-Cell epitopes reduces the immunogenicity of chimeric antibodies: new evidence supporting a simple method. Hybrid Hybridomics 2003; 22:245-57; PMID:14511570; http://dx.doi.org/10.1089/153685903322328974
  • Stickler M, Chin R, Faravashi N, Gebel W, Razo OJ, Rochanayon N, Power S, Valdes AM, Holmes S, Harding FA. Human population-based identification of CD4+ T-cell peptide epitope determinants. J Immunol Methods 2003; 281:95-108; PMID:14580884; http://dx.doi.org/10.1016/S0022-1759(03)00279-5
  • Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer 2008; 44:46-53; PMID:17945478; http://dx.doi.org/10.1016/j.ejca.2007.08.028
  • Hassan R, Thomas A, Alewine C, Le D, Jaffee E, Pastan I. Mesothelin immunotherapy for cancer: ready for prime time? J Clin Oncol 2016; 34:4171-9. PMID:27863199; http://dx.doi.org/10.1200/JCO.2016.68.3672
  • Kaneko O, Gong L, Zhang J, Hansen JK, Hassan R, Lee B, Ho M. A binding domain on mesothelin for CA125/MUC16. J Biol Chem 2009; 284:3739-49; PMID:19075018; http://dx.doi.org/10.1074/jbc.M806776200
  • Ho M, Hassan R, Zhang J, Wang Q-c, Onda M, Bera T, Pastan I. Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients. Clin Cancer Res 2005; 11:3814-20; PMID:15897581; http://dx.doi.org/10.1158/1078-0432.CCR-04-2304
  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011; 67:235-42; PMID:21460441; http://dx.doi.org/10.1107/S0907444910045749
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605-12; PMID:15264254; http://dx.doi.org/10.1002/jcc.20084
  • Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9:1-8; PMID:18173834; http://dx.doi.org/10.1093/bib/bbn041
  • DiMattia MA, Watts NR, Stahl SJ, Rader C, Wingfield PT, Stuart DI, Steven AC, Grimes JM. Implications of the HIV-1 Rev dimer structure at 3.2 Å resolution for multimeric binding to the Rev response element. Proc Natl Acad Sci USA 2010; 107:5810-4; PMID:20231488; http://dx.doi.org/10.1073/pnas.0914946107
  • Stahl SJ, Watts NR, Rader C, Dimattia MA, Mage RG, Palmer I, Kaufman JD, Grimes JM, Stuart DI, Steven AC, et al. Generation and characterization of a chimeric rabbit/human Fab for co-crystallization of HIV-1 Rev. J Mol Biol 2010; 397:697-708; PMID:20138059; http://dx.doi.org/10.1016/j.jmb.2010.01.061
  • Lammens A, Baehner M, Kohnert U, Niewoehner J, von Proff L, Schraeml M, Lammens K, Hopfner K-P. Crystal structure of human TWEAK in complex with the fab fragment of a neutralizing antibody reveals insights into receptor binding. PLoS One 2013; 8:e62697; PMID:23667509; http://dx.doi.org/10.1371/journal.pone.0062697
  • Pan R, Sampson JM, Chen Y, Vaine M, Wang S, Lu S, Kong X-P. Rabbit anti-HIV-1 monoclonal antibodies raised by immunization can mimic the antigen-binding modes of antibodies derived from HIV-1-infected humans. J Virol 2013; 87:10221-31; PMID:23864637; http://dx.doi.org/10.1128/JVI.00843-13
  • Malia TJ, Teplyakov A, Brezski RJ, Luo J, Kinder M, Sweet RW, Almagro JC, Jordan RE, Gilliland GL. Structure and specificity of an antibody targeting a proteolytically cleaved IgG hinge. Proteins: Struct Funct Bioinform 2014; 82:1656-67; PMID:24638881; http://dx.doi.org/10.1002/prot.24545

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.