2,579
Views
5
CrossRef citations to date
0
Altmetric
Report

Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography–mass spectrometry

ORCID Icon, , , , , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 1982847 | Received 30 Jul 2021, Accepted 16 Sep 2021, Published online: 21 Oct 2021

References

  • Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34–10. doi:10.1038/nri2206. PMID: 18064051.
  • Dekkers G, Treffers L, Plomp R, Bentlage AEH, De Boer M, Koeleman CAM, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of fc-receptor- and complement-mediated-effector activities. Front Immunol. 2017;8(877). doi:10.3389/fimmu.2017.00877. PMID: 28824618.
  • Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M. Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A. 2011;108(31):12669–74. doi:10.1073/pnas.1108455108. PMID: 21768335.
  • Radaev S, Motyka S, Fridman W-H, Sautes-Fridman C, Sun PD. The structure of a human type III Fcγ receptor in complex with Fc. J Biol Chem. 2001;276(19):16469–77. doi:10.1074/jbc.M100350200. PMID: 11297532.
  • Barb AW. Fc γ receptor compositional heterogeneity: considerations for immunotherapy development. J Biol Chem. 2021;296:100057. PMID: 33172893. doi:10.1074/jbc.REV120.013168.
  • Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8(3):226–34. doi:10.1038/nrd2804. PMID: 19247305.
  • Kerntke C, Nimmerjahn F, Biburger M. There is (scientific) strength in numbers: a comprehensive quantitation of Fc gamma receptor numbers on human and murine peripheral blood leukocytes. Front Immunol. 2020;11(118). doi:10.3389/fimmu.2020.00118. PMID: 32117269.
  • Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A, Klein C, Introna M. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013;122(20):3482–91. doi:10.1182/blood-2013-05-504043. PMID: 24106207.
  • Subedi GP, Barb AW. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. mAbs. 2016;8(8):1512–24. doi:10.1080/19420862.2016.1218586. PMID: 27492264.
  • Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–34. doi:10.1093/glycob/cwv065. PMID: 26263923.
  • Alt N, Zhang TY, Motchnik P, Taticek R, Quarmby V, Schlothauer T, Beck H, Emrich T, Harris RJ. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals. 2016;44(5):291–305. doi:10.1016/j.biologicals.2016.06.005. PMID: 27461239.
  • Roberts JT, Barb AW. A single amino acid distorts the Fc γ receptor IIIb/CD16b structure upon binding immunoglobulin G1 and reduces affinity relative to CD16a. J Biol Chem. 2018;293(51):19899–908. doi:10.1074/jbc.RA118.005273. PMID: 30361439.
  • Caaveiro JM, Kiyoshi M, Tsumoto K. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design. Immunol Rev. 2015;268(1):201–21. doi:10.1111/imr.12365. PMID: 26497522.
  • Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daëron M. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716–25. doi:10.1182/blood-2008-09-179754. PMID: 19018092.
  • Peipp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WWK, Dechant M, Beyer T, Repp R, van Berkel PHC, Vink T, van de Winkel JGJ. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood. 2008;112(6):2390–99. doi:10.1182/blood-2008-03-144600. PMID: 18566325.
  • De Taeye SW, Bentlage AEH, Mebius MM, Meesters JI, Lissenberg-Thunnissen S, Falck D, Sénard T, Salehi N, Wuhrer M, Schuurman J. FcγR binding and ADCC activity of human IgG allotypes. Front Immunol. 2020;11(740). doi:10.3389/fimmu.2020.00740. PMID: 32435243.
  • Subedi GP, Barb AW. CD16a with oligomannose-type N-glycans is the only “low-affinity” Fc γ receptor that binds the IgG crystallizable fragment with high affinity in vitro. J Biol Chem. 2018;293(43):16842–50. doi:10.1074/jbc.RA118.004998. PMID: 30213862.
  • Lippold S, Nicolardi S, Domínguez-Vega E, Heidenreich A-K, Vidarsson G, Reusch D, Haberger M, Wuhrer M, Falck D. Glycoform-resolved FcɣRIIIa affinity chromatography–mass spectrometry. mAbs. 2019;11(7):1191–96. doi:10.1080/19420862.2019.1636602. PMID: 31276431.
  • Lippold S, Nicolardi S, Wuhrer M, Falck D. Proteoform-resolved FcɤRIIIa binding assay for fab glycosylated monoclonal antibodies achieved by affinity chromatography mass spectrometry of Fc moieties. Front Chem. 2019;7(698). doi:10.3389/fchem.2019.00698. PMID: 31709228.
  • Dashivets T, Thomann M, Rueger P, Knaupp A, Buchner J, Schlothauer T. Multi-angle effector function analysis of human monoclonal IgG glycovariants. PLoS One. 2015;10(12):e0143520. doi:10.1371/journal.pone.0143520. PMID: 26657484.
  • Thomann M, Schlothauer T, Dashivets T, Malik S, Avenal C, Bulau P, Rüger P, Reusch D. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. PLoS One. 2015;10(8):e0134949. doi:10.1371/journal.pone.0134949. PMID: 26266936.
  • Cymer F, Beck H, Rohde A, Reusch D. Therapeutic monoclonal antibody N-glycosylation – structure, function and therapeutic potential. Biologicals. 2018;52:1–11. PMID: 29239840. doi:10.1016/j.biologicals.2017.11.001.
  • Wojcik I, Sénard T, de Graaf EL, Janssen GMC, De Ru AH, Mohammed Y, Van Veelen PA, Vidarsson G, Wuhrer M, Falck D. Site-specific glycosylation mapping of Fc gamma receptor IIIb from neutrophils of individual healthy donors. Anal Chem. 2020;92(19):13172–81. doi:10.1021/acs.analchem.0c02342. PMID: 32886488.
  • Choo MS, Wan C, Rudd PM, Nguyen-Khuong T. GlycopeptideGraphMS: improved glycopeptide detection and identification by exploiting graph theoretical patterns in mass and retention time. Anal Chem. 2019;91(11):7236–44. doi:10.1021/acs.analchem.9b00594. PMID: 31079452.
  • MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–68. doi:10.1093/bioinformatics/btq054. PMID: 20147306.
  • Freimoser–Grundschober A, Rueger P, Fingas F, Sondermann P, Herter S, Schlothauer T, Umana P, Neumann C. FcγRIIIa chromatography to enrich a-fucosylated glycoforms and assess the potency of glycoengineered therapeutic antibodies. J Chromatogr A. 2020;1610:460554. PMID: 31597603. doi:10.1016/j.chroma.2019.460554.
  • Zeck A, Pohlentz G, Schlothauer T, Peter-Katalinić J, JT R. Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa. J Proteome Res. 2011;10(7):3031–39. doi:10.1021/pr1012653. PMID: 21561106.
  • Schlothauer T, Herter S, Koller CF, Grau-Richards S, Steinhart V, Spick C, Kubbies M, Klein C, Umaña P, Mössner E. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016;29(10):457–66. doi:10.1093/protein/gzw040. PMID: 27578889.
  • Umaña P, Jean–Mairet J, Moudry R, Amstutz H, Bailey JE. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol. 1999;17(2):176–80. doi:10.1038/6179. PMID: 10052355.
  • Cymer F, Thomann M, Wegele H, Avenal C, Schlothauer T, Gygax D, Beck H. Oxidation of M252 but not M428 in hu-IgG1 is responsible for decreased binding to and activation of hu-FcγRIIa (His131). Biologicals. 2017;50:125–28. PMID: 28988621. doi:10.1016/j.biologicals.2017.09.006.
  • Hayes JM, Frostell A, Karlsson R, Müller S, Martín SM, Pauers M, Reuss F, Cosgrave EF, Anneren C, Davey GP. Identification of Fc gamma receptor glycoforms that produce differential binding kinetics for rituximab. Mol Cell Proteomics. 2017;16(10):1770–88. doi:10.1074/mcp.M117.066944. PMID: 28576848.
  • Cambay F, Forest-Nault C, Dumoulin L, Seguin A, Henry O, Durocher Y, De Crescenzo G. Glycosylation of Fcγ receptors influences their interaction with various IgG1 glycoforms. Mol Immunol. 2020;121:144–58. PMID: 32222585. doi:10.1016/j.molimm.2020.03.010.
  • Chu TH, Patz EF, Ackerman ME. Coming together at the hinges: therapeutic prospects of IgG3. mAbs. 2021;13(1):1882028. doi:10.1080/19420862.2021.1882028. PMID: 33602056.
  • Wei B, Gao X, Cadang L, Izadi S, Liu P, Zhang H-M, Hecht E, Shim J, Magill G, Pabon JR. Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. mAbs. 2021;13(1):1893427. doi:10.1080/19420862.2021.1893427. PMID: 33682619.
  • Thijs LJ, Van Osch JN, Derksen NIL, van Mierlo G, Ellen van der Schoot C, Wuhrer M, Rispens T, Vidarsson G. Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation. Journal of Immunology (Baltimore, Md: 1950). 2021. doi:10.4049/jimmunol.2100399. PMID: 34408013.
  • Aoyama M, Hashii N, Tsukimura W, Osumi K, Harazono A, Tada M, Kiyoshi M, Matsuda A, Ishii-Watabe A. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. mAbs. 2019;11(5):826–36. doi:10.1080/19420862.2019.1608143. PMID: 30990348.
  • Yogo R, Yamaguchi Y, Watanabe H, Yagi H, Satoh T, Nakanishi M, Onitsuka M, Omasa T, Shimada M, Maruno T. The fab portion of immunoglobulin G contributes to its binding to Fcγ receptor III. Sci Rep. 2019;9(1):11957. doi:10.1038/s41598-019-48323-w. PMID: 31420591.
  • Sun Y, Izadi S, Callahan M, Deperalta G, Wecksler AT. Antibody–receptor interactions mediate antibody-dependent cellular cytotoxicity. J Biol Chem. 2021;297(1):100826. doi:10.1016/j.jbc.2021.100826. PMID: 34044019.
  • de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology. 2019;30(4):226–40. doi:10.1093/glycob/cwz048. PMID: 31281930.
  • Schlothauer T, Rueger P, Stracke JO, Hertenberger H, Fingas F, Kling L, Emrich T, Drabner G, Seeber S, Auer J. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. mAbs. 2013;5(4):576–86. doi:10.4161/mabs.24981. PMID: 23765230.
  • Evans AR, Capaldi MT, Goparaju G, Colter D, Shi FF, Aubert S, Li L-C, Mo J, Lewis MJ, Hu P. Using bispecific antibodies in forced degradation studies to analyze the structure–function relationships of symmetrically and asymmetrically modified antibodies. mAbs. 2019;11(6):1101–12. doi:10.1080/19420862.2019.1618675. PMID: 31161859.
  • Lu X, Machiesky LA, De Mel N, Du Q, Xu W, Washabaugh M, Jiang X-R, Wang J. Characterization of IgG1 Fc deamidation at asparagine 325 and its impact on antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. Sci Rep. 2020;10(1):383. doi:10.1038/s41598-019-57184-2. PMID: 31941950.
  • Bahou C, Love EA, Leonard S, Spears RJ, Maruani A, Armour K, Baker JR, Chudasama V. Disulfide modified IgG1: an investigation of biophysical profile and clinically relevant Fc interactions. Bioconjug Chem. 2019;30(4):1048–54. doi:10.1021/acs.bioconjchem.9b00174. PMID: 30855134.
  • Derer S, Glorius P, Schlaeth M, Lohse S, Klausz K, Muchhal U, Desjarlais JR, Humpe A, Valerius T, Peipp M. Increasing FcγRIIa affinity of an FcγRIII-optimized anti-EGFR antibody restores neutrophil-mediated cytotoxicity. mAbs. 2014;6(2):409–21. doi:10.4161/mabs.27457. PMID: 24492248.
  • Treffers LW, van Houdt M, Bruggeman CW, Heineke MH, Zhao XW, van der Heijden J, Nagelkerke SQ, Verkuijlen PJJH, Geissler J, Lissenberg-Thunnissen S. FcγRIIIb restricts antibody-dependent destruction of cancer cells by human neutrophils. Front Immunol. 2019;9:3124–3124. PMID: 30761158. doi:10.3389/fimmu.2018.03124.
  • García-García E, Nieto-Castañeda G, Ruiz-Saldaña M, Mora N, Rosales C. FcγRIIA and FcγRIIIB mediate nuclear factor activation through separate signaling pathways in human neutrophils. Journal of Immunology (Baltimore, Md: 1950). 2009;182(8):4547–56. doi:10.4049/jimmunol.0801468. PMID: 19342628.
  • Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol. 2014;14(2):94–108. doi:10.1038/nri3582. PMID: 24445665.
  • Weber F, Breustedt D, Schlicht S, Meyer CA, Niewoehner J, Ebeling M, Freskgard PO, Bruenker P, Singer T, Reth M. First infusion reactions are mediated by FcγRIIIb and neutrophils. Pharm Res. 2018 Jun 27;35(9):169. doi:10.1007/s11095-018-2448-8. PMID: 29951887; PubMed Central PMCID: PMCPMC6021477.