2,751
Views
15
CrossRef citations to date
0
Altmetric
Mini-Review

Eutrophication, microbial-sulfate reduction and mass extinctions

, , , , &
Article: e1115162 | Received 08 Sep 2015, Accepted 26 Oct 2015, Published online: 10 Feb 2016

References

  • Sepkoski JJ, Jr. A Factor Analytic Description of the Phanerozoic Marine Fossil Record. Paleobiology 1981; 7:36-53
  • Sepkoski JJ, Jr. A Kinetic Model of Phanerozoic Taxonomic Diversity. III. Post-Paleozoic Families and Mass Extinctions. Paleobiology 1984; 10:246-67
  • Raup DM, Sepkoski JJ, Jr. Mass Extinctions in the Marine Fossil Record. Science 1982; 215:1501-3; PMID:17788674; http://dx.doi.org/10.1126/science.215.4539.1501
  • Bambach RK, Knoll AH, Wang SC. Origination, extinction, and mass depletions of marine diversity. Paleobiology 2004; 30:522-42; http://dx.doi.org/10.1666/0094-8373(2004)030%3c0522:OEAMDO%3e2.0.CO;2
  • Erwin DH. The Permo-Triassic extinction. Nature 1994; 367:231-6; http://dx.doi.org/10.1038/367231a0
  • Alvarez LW, Alvarez W, Asaro F, Michel HV. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science 1980; 208:1095-108; PMID:17783054; http://dx.doi.org/10.1126/science.208.4448.1095
  • Keller G. Impacts, volcanism and mass extinction: random coincidence or cause and effect? Australian J Earth Sci 2005; 52:725-57; http://dx.doi.org/10.1080/08120090500170393
  • Sheehan PM. The Late Ordivician mass extinction. Ann Rev Earth Planetary Sci 2001; 29:331-64; http://dx.doi.org/10.1146/annurev.earth.29.1.331
  • Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, Min AD. Extensive 200-Million-Year-Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science 1999; 284:616-8; PMID:10213679; http://dx.doi.org/10.1126/science.284.5414.616
  • Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell WS, Morgan LE, Mundil R, Smit J. Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. Science 2013; 339:684-7; PMID:23393261; http://dx.doi.org/10.1126/science.1230492
  • Hsü KJ, McKenzie JA. A “Strangelove” Ocean in the Earliest Tertiary. in The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present (eds E.T. Sundquist and W.S. Broecker), American Geophysical Union, Washington, D. C 1985:487-92; http://dx.doi.org/10.1029/GM032p0487
  • Alegret L, Thomas E, Lohmann KC. End-Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci 2012; 109:728-32; http://dx.doi.org/10.1073/pnas.1110601109
  • McGhee GR, Gilmore JS, Orth CJ, Olsen E. No geochemical evidence for an asteroidal impact at late Devonian mass extinction horizon. Nature 1984; 308:629-31; http://dx.doi.org/10.1038/308629a0
  • Renne PR, Melosh HJ, Farley KA, Reimold WU, Koeberl C, Rampino MR, Kelly SP, Ivanov BA. Is Bedout an Impact Crater? Take 2. Science 2004; 306:610-2; PMID:15498994; http://dx.doi.org/10.1126/science.306.5696.610
  • Joachimski MM, Buggisch W. Anoxic events in the late Frasnian—Causes of the Frasnian-Famennian faunal crisis? Geology 1993; 21:675-8; http://dx.doi.org/10.1130/0091-7613(1993)021%3c0675:AEITLF%3e2.3.CO;2
  • Kump LR, Pavlov A, Arthur MA. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 2005; 33:397-400; http://dx.doi.org/10.1130/G21295.1
  • Joachimski MM, Ostertag-Henning C, Pancost RD, Strauss H, Freeman KH, Littke R, Sinninghe Damsté JS, Racki G. Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala — Holy Cross Mountains/Poland). Chem Geol 2001; 175:109-31; http://dx.doi.org/10.1016/S0009-2541(00)00365-X
  • Wignall PB, Hallam A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 1992; 93:21-46; http://dx.doi.org/10.1016/0031-0182(92)90182-5
  • Wignall PB, Twitchett RJ. Oceanic Anoxia and the End Permian Mass Extinction. Science 1996; 272:1155-8; PMID:8662450; http://dx.doi.org/10.1126/science.272.5265.1155
  • Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y. Photic Zone Euxinia During the Permian-Triassic Superanoxic Event. Science 2005; 307:706-9; PMID:15661975; http://dx.doi.org/10.1126/science.1104323
  • Richoz S, van de Schootbrugge B, Pross J, Puttmann W, Quan TM, Lindstrom S, Heunisch C, Fiebig J, Maquil R, Schouten S, et al. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nature Geosci 2012; 5:662-7; http://dx.doi.org/10.1038/ngeo1539
  • Hammarlund EU, Dahl TW, Harper DAT, Bond DPG, Nielsen AT, Bjerrum CJ, Schovsbo NH, Schönlaub HP, Zalasiewicz JA, Canfield DE. A sulfidic driver for the end-Ordovician mass extinction. Earth Planetary Sci Lett 2012; 331-332:128-39
  • Schobben M, Stebbins A, Ghaderi A, Strauss H, Korn D, Korte C. Flourishing ocean drives the end-Permian marine mass extinction. Proc Natl Acad Sci 2015; 112:10298-303; http://dx.doi.org/10.1073/pnas.1503755112
  • Isozaki Y. Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea. Science 1997; 276:235-8; PMID:9092467; http://dx.doi.org/10.1126/science.276.5310.235
  • Arthur MA, Sageman BB. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Ann Rev Earth Planetary Sci 1994; 22:499-551; http://dx.doi.org/10.1146/annurev.ea.22.050194.002435
  • Ross DA, Degens ET, MacIlvaine J. Black Sea: Recent Sedimentary History. Science 1970; 170:163-5; PMID:17833497; http://dx.doi.org/10.1126/science.170.3954.163
  • Ozaki K, Tajima S, Tajika E. Conditions required for oceanic anoxia/euxinia: Constraints from a one-dimensional ocean biogeochemical cycle model. Earth Planetary Sci Lett 2011; 304:270-9; http://dx.doi.org/10.1016/j.epsl.2011.02.011
  • Brumsack H-J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology 2006; 232:344-61; http://dx.doi.org/10.1016/j.palaeo.2005.05.011
  • Diaz RJ, Rosenberg R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008; 321:926-9; PMID:18703733; http://dx.doi.org/10.1126/science.1156401
  • Canfield D, Des Marais D. Aerobic sulfate reduction in microbial mats. Science 1991; 251:1471-3; PMID:11538266; http://dx.doi.org/10.1126/science.11538266
  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geol 2006; 185:131-45; http://dx.doi.org/10.1016/j.sedgeo.2005.12.008
  • Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O. A Cryptic Sulfur Cycle in Oxygen-Minimum–Zone Waters off the Chilean Coast. Science 2010; 330:1375-8; PMID:21071631; http://dx.doi.org/10.1126/science.1196889
  • Schunck H, Lavik G, Desai DK, Großkopf T, Kalvelage T, Löscher CR, Paulmier A, Contreras S, Siegel H, Holtappels M, et al. Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy. PLoS ONE 2013; 8:e68661; PMID:23990875; http://dx.doi.org/10.1371/journal.pone.0068661
  • Brüchert V, Jørgensen BB, Neumann K, Riechmann D, Schlösser M, Schulz H. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central namibian coastal upwelling zone. Geochimica et Cosmochimica Acta 2003; 67:4505-18; http://dx.doi.org/10.1016/S0016-7037(03)00275-8
  • Strauss H. Geological evolution from isotope proxy signals — sulfur. Chem Geol 1999; 161:89-101; http://dx.doi.org/10.1016/S0009-2541(99)00082-0
  • Garrels RM, Lerman A. Phanerozoic cycles of sedimentary carbon and sulfur. Proc Natl Acad Sci 1981; 78:4652-6; http://dx.doi.org/10.1073/pnas.78.8.4652
  • Hansen KW, Wallmann K. Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective. Am J Sci 2003; 303:94-148; http://dx.doi.org/10.2475/ajs.303.2.94
  • Bains S, Norris RD, Corfield RM, Faul KL. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 2000; 407:171-4; PMID:11001051; http://dx.doi.org/10.1038/35025035
  • Wallmann K. Controls on the cretaceous and cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta 2001; 65:3005-25; http://dx.doi.org/10.1016/S0016-7037(01)00638-X
  • Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW. Paleophysiology and end-Permian mass extinction. Earth Planetary Sci Lett 2007; 256:295-313; http://dx.doi.org/10.1016/j.epsl.2007.02.018
  • Bijma J, Pörtner H-O, Yesson C, Rogers AD. Climate change and the oceans – What does the future hold? Mar Pollut Bull 2013; 74:495-505; PMID:23932473; http://dx.doi.org/10.1016/j.marpolbul.2013.07.022
  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol 2006; 232:12-32; http://dx.doi.org/10.1016/j.chemgeo.2006.02.012
  • Algeo TJ, Lyons TW. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 2006; 21:n/a-n/a; http://dx.doi.org/10.1029/2004PA001112
  • Bond D, Wignall PB, Racki G. Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine 2004; 141:173-93; http://dx.doi.org/10.1017/S0016756804008866
  • Schoepfer SD, Henderson CM, Garrison GH, Foriel J, Ward PD, Selby D, Hower JC, Algeo TJ, Shen Y. Termination of a continent-margin upwelling system at the Permian–Triassic boundary (Opal Creek, Alberta, Canada). Global and Planetary Change 2013; 105:21-35; http://dx.doi.org/10.1016/j.gloplacha.2012.07.005
  • Fio K, Spangenberg JE, Vlahović I, Sremac J, Velić I, Mrinjek E. Stable isotope and trace element stratigraphy across the Permian–Triassic transition: A redefinition of the boundary in the Velebit Mountain, Croatia. Chem Geol 2010; 278:38-57; http://dx.doi.org/10.1016/j.chemgeo.2010.09.001
  • Grasby SE, Beauchamp B. Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada. Chem Geol 2009; 264:232-46; http://dx.doi.org/10.1016/j.chemgeo.2009.03.009
  • Quan TM, van de Schootbrugge B, Field MP, Rosenthal Y, Falkowski PG. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic-Jurassic boundary. Global Biogeochemical Cycles 2008; 22:n/a-n/a; http://dx.doi.org/10.1029/2007GB002981
  • Takahashi S, Yamasaki S-I, Ogawa Y, Kimura K, Kaiho K, Yoshida T, Tsuchiya N. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planetary Sci Lett 2014; 393:94-104; http://dx.doi.org/10.1016/j.epsl.2014.02.041
  • Algeo TJ, Kuwahara K, Sano H, Bates S, Lyons T, Elswick E, Hinnov L, Ellwood B, Moser J, Maynard JB. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 2011; 308:65-83; http://dx.doi.org/10.1016/j.palaeo.2010.07.007
  • Algeo TJ, Hinnov L, Moser J, Maynard JB, Elswick E, Kuwahara K, Sano H. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 2010; 38:187-90; http://dx.doi.org/10.1130/G30483.1
  • Shen J, Algeo TJ, Zhou L, Feng Q, Yu J, Ellwood B. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology 2012; 10:82-103; PMID:22051197; http://dx.doi.org/10.1111/j.1472-4669.2011.00306.x
  • Murphy AE, Sageman BB, Hollander DJ. Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the Late Devonian mass extinction. Geology 2000; 28:427-30; http://dx.doi.org/10.1130/0091-7613(2000)28%3c427:EBDOTM%3e2.0.CO;2
  • Shen J, Schoepfer SD, Feng Q, Zhou L, Yu J, Song H, Wei H, Algeo TJ. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Sci Rev 2015; 149:136-62; http://dx.doi.org/10.1016/j.earscirev.2014.11.002
  • Retallack GJ. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geological Society of America Bulletin 1999; 111:52-70; http://dx.doi.org/10.1130/0016-7606(1999)111%3c0052:PGPRBE%3e2.3.CO;2
  • Ruhl M, Bonis NR, Reichart G-J, Damsté JSS, Kürschner WM. Atmospheric Carbon Injection Linked to End-Triassic Mass Extinction. Science 2011; 333:430-4; PMID:21778394; http://dx.doi.org/10.1126/science.1204255
  • Joachimski MM, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 2012; 40:195-8; http://dx.doi.org/10.1130/G32707.1
  • Joachimski MM, Breisig S, Buggisch W, Talent JA, Mawson R, Gereke M, Morrow JR, Day J, Weddige K. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth Planetary Sci Lett 2009; 284:599-609; http://dx.doi.org/10.1016/j.epsl.2009.05.028
  • Schobben M, Joachimski MM, Korn D, Leda L, Korte C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res 2014; 26:675-83; http://dx.doi.org/10.1016/j.gr.2013.07.019
  • John EH, Cliff R, Wignall PB. A positive trend in seawater 87Sr/86Sr values over the Early–Middle Frasnian boundary (Late Devonian) recorded in well-preserved conodont elements from the Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 2008; 269:166-75; http://dx.doi.org/10.1016/j.palaeo.2008.04.031
  • Sedlacek ARC, Saltzman MR, Algeo TJ, Horacek M, Brandner R, Foland K, Denniston RF. 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery. Geology 2014
  • Wignall PB. Large igneous; 42:779-782. provinces and mass extinctions. Earth-Sci Rev 2001; 53:1-33; http://dx.doi.org/10.1016/S0012-8252(00)00037-4
  • Sobolev SV, Sobolev AV, Kuzmin DV, Krivolutskaya NA, Petrunin AG, Arndt NT, Radko VA, Vasiliev YR. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 2011; 477:312-6; PMID:21921914; http://dx.doi.org/10.1038/nature10385
  • Renne PR, Black MT, Zichao Z, Richards MA, Basu AR. Synchrony and Causal Relations Between Permian-Triassic Boundary Crises and Siberian Flood Volcanism. Science 1995; 269:1413-6; PMID:17731151; http://dx.doi.org/10.1126/science.269.5229.1413
  • Brennecka GA, Herrmann AD, Algeo TJ, Anbar AD. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc Natl Acad Sci 2011; 108:17631-4; http://dx.doi.org/10.1073/pnas.1106039108
  • Kaplan IR, Rittenberg SC. Microbiological Fractionation of Sulphur Isotopes. Microbiology 1964; 34:195-212
  • Brunner B, Bernasconi SM. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochimica et Cosmochimica Acta 2005; 69:4759-71; http://dx.doi.org/10.1016/j.gca.2005.04.015
  • Cortecci G, Longinelli A. 18O/16O ratios in sulfate from fossil shells. Earth Planetary Sci Lett 1973; 19:410-2; http://dx.doi.org/10.1016/0012-821X(73)90183-0
  • Cortecci G, Longinelli A. 18O/16O ratios in sulfate from living marine organisms. Earth Planetary Sci Lett 1971; 11:273-6; http://dx.doi.org/10.1016/0012-821X(71)90179-8
  • Holland HD. Systematics of the isotopic composition of sulfur in the oceans during the Phanerozoic and its implications for atmospheric oxygen. Geochimica et Cosmochimica Acta 1973; 37:2605-16; http://dx.doi.org/10.1016/0016-7037(73)90268-8
  • Mizutani Y, Rafter TA. Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate. Geochemical J 1973; 6:183-91; http://dx.doi.org/10.2343/geochemj.6.183
  • Turchyn AV, Schrag DP. Oxygen Isotope Constraints on the Sulfur Cycle over the Past 10 Million Years. Science 2004; 303:2004-7; PMID:15044800; http://dx.doi.org/10.1126/science.1092296
  • Rampino MR, Caldeira K. Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 2005; 17:554-9; http://dx.doi.org/10.1111/j.1365-3121.2005.00648.x
  • Courtillot VE, Renne PR. On the ages of flood basalt events. Comptes Rendus Geosci 2003; 335:113-40; http://dx.doi.org/10.1016/S1631-0713(03)00006-3
  • Hughes TP, Carpenter S, Rockström J, Scheffer M, Walker B. Multiscale regime shifts and planetary boundaries. Trends Ecol Evol 2013; 28:389-95; PMID:23769417; http://dx.doi.org/10.1016/j.tree.2013.05.019
  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, et al. Approaching a state shift in Earth/'s biosphere. Nature 2012; 486:52-8; PMID:22678279; http://dx.doi.org/10.1038/nature11018
  • Kiessling W, Simpson C. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biol 2011; 17:56-67; http://dx.doi.org/10.1111/j.1365-2486.2010.02204.x
  • Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, et al. The Geological Record of Ocean Acidification. Science 2012; 335:1058-63; PMID:22383840; http://dx.doi.org/10.1126/science.1208277
  • Clapham ME, Payne JL. Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 2011; 39:1059-62; http://dx.doi.org/10.1130/G32230.1
  • Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu M, Wei J. Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci 2010; 107:8543-8; http://dx.doi.org/10.1073/pnas.0914065107
  • Hinojosa JL, Brown ST, Chen J, DePaolo DJ, Paytan A, Shen S-Z, Payne JL. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 2012; 40:743-6; http://dx.doi.org/10.1130/G33048.1
  • Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET. Ocean acidification and the Permo-Triassic mass extinction. Science 2015; 348:229-32; PMID:25859043; http://dx.doi.org/10.1126/science.aaa0193
  • Meyer KM, Kump LR, Ridgwell A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 2008; 36:747-50; http://dx.doi.org/10.1130/G24618A.1
  • Luo G, Wang Y, Grice K, Kershaw S, Algeo TJ, Ruan X, Yang H, Jia C, Xie S. Microbial–algal community changes during the latest Permian ecological crisis: Evidence from lipid biomarkers at Cili, South China. Global and Planetary Change 2013; 105:36-51; http://dx.doi.org/10.1016/j.gloplacha.2012.11.015
  • Algeo TJ, Henderson CM, Tong J, Feng Q, Yin H, Tyson RV. Plankton and productivity during the Permian–Triassic boundary crisis: An analysis of organic carbon fluxes. Global and Planetary Change 2013; 105:52-67; http://dx.doi.org/10.1016/j.gloplacha.2012.02.008
  • Summons RE, Jahnke LL, Hope JM, Logan GA. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 1999; 400:554-7; PMID:10448856; http://dx.doi.org/10.1038/23005
  • Xie S, Pancost RD, Yin H, Wang H, Evershed RP. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 2005; 434:494-7; PMID:15791253; http://dx.doi.org/10.1038/nature03396
  • Sarmento H, Montoya JM, Vázquez-Domínguez E, Vaqué D, Gasol JM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc Lond B Biol Sci 2010; 365(1549):2137-49; PMID: 20513721.
  • Romano C, Goudemand N, Vennemann TW, Ware D, Schneebeli-Hermann E, Hochuli PA, Bruhwiler T, Brinkmann W, Bucher H. Climatic and biotic upheavals following the end-Permian mass extinction. Nat Geosci 2013; 6:57-60; http://dx.doi.org/10.1038/ngeo1667
  • Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X. Lethally Hot Temperatures During the Early Triassic Greenhouse. Science 2012; 338:366-70; PMID:23087244; http://dx.doi.org/10.1126/science.1224126
  • Feng Q, Algeo TJ. Evolution of oceanic redox conditions during the Permo-Triassic transition: Evidence from deepwater radiolarian facies. Earth-Sci Rev 2014; 137:34-51; http://dx.doi.org/10.1016/j.earscirev.2013.12.003
  • Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S, Lindberg DR, Liow LH, Lockwood R, McClain CR, McGuire JL, et al. Extinctions in ancient and modern seas. Trends Ecol Evol 2012; 27:608-17; PMID:22889500; http://dx.doi.org/10.1016/j.tree.2012.07.010
  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, et al. Has the Earth/'s sixth mass extinction already arrived? Nature 2011; 471:51-7; PMID:21368823; http://dx.doi.org/10.1038/nature09678
  • Payne JL, Clapham ME. End-Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty-First Century? Ann Rev Earth Planetary Sci 2012; 40:89-111; http://dx.doi.org/10.1146/annurev-earth-042711-105329
  • The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, Midgley PM, eds. IPCC, 2013: Climate Change 2013: Cambridge, United Kingdom and New York, NY, USA, 2013:1535.
  • Nixon S, Buckley B. “A strikingly rich zone”—Nutrient enrichment and secondary production in coastal marine ecosystems. Estuaries 2002; 25:782-96; http://dx.doi.org/10.1007/BF02804905
  • Hartmann J, West AJ, Renforth P, Köhler P, De La Rocha CL, Wolf-Gladrow DA, Dürr HH, Scheffran J. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev Geophysics 2013; 51:113-49; http://dx.doi.org/10.1002/rog.20004