1,586
Views
6
CrossRef citations to date
0
Altmetric
Mini-Review

Common functions of the chloroplast and mitochondrial co-chaperones cpDnaJL (CDF1) and mtDnaJ (PAM16) in protein import and ROS scavenging in Arabidopsis thaliana

, , , &
Article: e1119343 | Received 14 Oct 2015, Accepted 30 Oct 2015, Published online: 27 Jun 2016

References

  • Margulis L. Origin of eukaryotic cells. New Haven, CT: Yale University Press; 1970.
  • Paila YD, Richardson LG, Schnell DJ. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 2015; 427(5):1038-60; PMID:25174336; http://dx.doi.org/10.1016/j.jmb.2014.08.016
  • Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem 2007; 76:723-49; PMID:17263664; http://dx.doi.org/10.1146/annurev.biochem.76.052705.163409
  • Flores-Pérez Ú, Jarvis P. Molecular chaperone involvement in chloroplast protein import. Biochim Biophys Acta 2013; 1833:332-40; http://dx.doi.org/10.1016/j.bbamcr.2012.03.019
  • Schulz C, Schendzielorz A, Rehling P. Unlocking the presequence import pathway. Trends Cell Biol 2015; 25(5):265-75; PMID:25542066; http://dx.doi.org/10.1016/j.tcb.2014.12.001
  • Qiu J, Li GW, Sui YF, Song HP, Si SY, Ge W. Heat-shocked tumor cell lysate-pulsed dendritic cells induce effective anti-tumor immune response in vivo. World J Gastroenterol 2006; 12:473-8; PMID:16489653
  • Rajan VB, D'ISilva P. Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genomics 2009; 9:433-46; PMID:19633874; http://dx.doi.org/10.1007/s10142-009-0132-0
  • Kawai-Yamada M, Saito Y, Jin L, Ogawa T, Kim KM, Yu LH, Tone Y, Hirata A, Umeda M, Uchimiya H. A novel Arabidopsis gene causes Bax-like lethality in Saccharomyces cerevisiae. J Biol Chem 2005; 280:39468-73; PMID:16192270; http://dx.doi.org/10.1074/jbc.M509632200
  • Lee JY, Lee HS, Song JY, Jung YJ, Reinbothe S, Park YI, Lee SY, Pai HS. CHAPERONE-LIKE PROTEIN of POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis. Plant Cell 2013; 25:1-17; http://dx.doi.org/10.1105/tpc.113.250110
  • Reinbothe S, Gray J, Rustgi S, von Wettstein D, Reinbothe C. Cell growth defect factor 1 is crucial for the substrate-dependent plastid import of NADPH:protochlorophyllide oxidoreductase A in Arabidopsis thaliana. Proc Natl Acad Sci USA 2015; 112:5838-43; PMID:25901327; http://dx.doi.org/10.1073/pnas.1506339112
  • van der Laan M, Hutu DP, Rehling P. On the mechanism of preprotein import by the mitochondrial presequence translocase. Biochim Biophys Acta 2010; 1803:732-9; PMID:20100523; http://dx.doi.org/10.1016/j.bbamcr.2010.01.013
  • Pais JE, Schilke B, Craig E. A. Reevaluation of the role of the Pam18:Pam16 interaction in translocation of proteins by the mitochondrial Hsp70-based import motor. Mol Biol Cell 2011; 22:4740-9; PMID:22031295; http://dx.doi.org/10.1091/mbc.E11-08-0715
  • Huang Y, Chen X, Liu Y, Roth C, Copeland C., McFarlane HE, Huang S, Lipka V, Wiermer M, Li X. Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nature Commun 2013; 4:2558
  • Chen X, Ghazanfar B, Khan AR, Hayat S, Cheng Z. Comparative analysis of putative orthologues of mitochondrial import motor subunit: Pam18 and PAM16 in plants. Plos One 2013; 8(10):e78400; PMID:24194927; http://dx.doi.org/10.1371/journal.pone.0078400
  • Reinbothe S, Runge S, Reinbothe C, van Cleve B, Apel K. Substrate-dependent transport of the NADPH: protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 1995; 7:161-72; PMID:7756827; http://dx.doi.org/10.1105/tpc.7.2.161
  • Reinbothe S, Quigley F, Gray J, Schemenewitz A, Reinbothe C. Identification of plastid envelope proteins required for the import of protochlorophyllide oxidoreductase (POR) A into the chloroplast of barley. Proc Natl Acad Sci USA 2004; 101:2197-202; PMID:14769934; http://dx.doi.org/10.1073/pnas.0307284101
  • Kim C, Apel K. Substrate-dependent and organ-specific chloroplast protein import in planta. Plant Cell 2004; 16:88-98; PMID:14688290; http://dx.doi.org/10.1105/tpc.015008
  • Reinbothe C, Pollmann S, Reinbothe S. Singlet oxygen links photosynthesis to translation and plant growth. Trends Plant Sci 2010; 15:499-506; PMID:20580304; http://dx.doi.org/10.1016/j.tplants.2010.05.011
  • Kim C, Apel K. Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity. Photosynth Res 2013; 116:455-64; PMID:23832611; http://dx.doi.org/10.1007/s11120-013-9876-4
  • Reinbothe C, Lebedev N, Reinbothe S. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 1999; 397:80-4 http://dx.doi.org/10.1038/16283
  • Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 2010; 15:614-24; PMID:20801074; http://dx.doi.org/10.1016/j.tplants.2010.07.002
  • Maekawa T, Kufer TA, Schulze-Lefert P. NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 2011; 12:817-26; PMID:21852785; http://dx.doi.org/10.1038/ni.2083
  • Quinlan CL, Perovoshchikova IV, Hey-Mogensen M. Sites of reactive oxygen species generation by mitochondria. Redox Biol 2013; 1:304-12; PMID:24024165; http://dx.doi.org/10.1016/j.redox.2013.04.005
  • Mehdy MC. Active oxygen species in plant defense against pathogens. Plant Physiol 1994; 105:467-72; PMID:12232215
  • Bischoff V, Cookson SJ, Wu S, Scheible WR. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J Exp Bot 2009; 60:955-65; PMID:19269997; http://dx.doi.org/10.1093/jxb/ern344
  • Scheible WR, Fry B, Kochevenko A, Schindelasch D, Zimmerli L, Somerville S, Loria R, Somerville CR. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 2003; 15(8):1781-94; PMID:12897252; http://dx.doi.org/10.1105/tpc.013342
  • Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 2010; 143(4):606-16; PMID:21074051; http://dx.doi.org/10.1016/j.cell.2010.10.020
  • Sundaravelpandian K, Chandrika NN, Schmidt W. PFT1, a transcriptional mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. New Phytol 2013; 197(1):151-61; PMID:23106228; http://dx.doi.org/10.1111/nph.12000
  • Lin CY, Huang LY, Chi WC, Huang TL, Kakimoto T, Tsai CR, Huang HJ. Pathways involved in vanadate-induced root hair formation in Arabidopsis. Physiol Plant 2015; 153(1):137-48; PMID:24833217; http://dx.doi.org/10.1111/ppl.12229
  • Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5:725-38; PMID:20360767; http://dx.doi.org/10.1038/nprot.2010.5
  • Lo JF, Hayashi M, Woo-Kim S, Tian B, Huang JF, Fearns C, Takayama S, Zapata JM, Yang Y, Lee JD. Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2)tid is critical for early embryonic development and cell survival. Mol Cell Biol 2004; 24:2226-36; PMID:14993262; http://dx.doi.org/10.1128/MCB.24.6.2226-2236.2004