1,316
Views
14
CrossRef citations to date
0
Altmetric
Mini-Review

Ultrasensitive detection of proteins and sugars at single-cell level

, , , , , , , & show all
Article: e1124201 | Received 04 Nov 2015, Accepted 18 Nov 2015, Published online: 01 Mar 2016

References

  • Spiller DG, Wood CD, Rand DA, White MR. Measurement of single-cell dynamics. Nature 2010; 465:736-45; PMID:20535203; http://dx.doi.org/10.1038/nature09232
  • Zenobi R. Single-cell metabolomics: analytical and biological perspectives. Science 2013; 342:1243259; PMID:24311695; http://dx.doi.org/10.1126/science.1243259
  • Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. Molecular Biology of the Cell, 6th edition. Garland Science, New York, USA. 2014
  • Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987; 155:335-50; PMID:3431465; http://dx.doi.org/10.1016/0076-6879(87)55023-6
  • Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnol (NY) 1993; 11:1026-30; http://dx.doi.org/10.1038/nbt0993-1026
  • Hatakeyama D, Okuta A, Otsuka E, Lukowiak K, Ito E. Consolidation of long-term memory by insulin in Lymnaea is not brought about by changing the number of insulin receptors. Commun Integr Biol 2013; 6:e23955; PMID:23710281; http://dx.doi.org/10.4161/cib.23955
  • Wagatsuma A, Sadamoto H, Kitahashi T, Lukowiak K, Urano A, Ito E. Determination of the exact copy numbers of particular mRNAs in a single cell by quantitative real-time RT-PCR. J Exp Biol 2005; 208:2389-98; PMID:15939778; http://dx.doi.org/10.1242/jeb.01625
  • Azami S, Wagatsuma A, Sadamoto H, Hatakeyama D, Usami T, Fujie M, Koyanagi R, Azumi K, Fujito Y, Lukowiak K, et al. Altered gene activity correlated with long-term memory formation of conditioned taste aversion in Lymnaea. J Neurosci Res 2006; 84:1610-20; PMID:16941636; http://dx.doi.org/10.1002/jnr.21045
  • Hatakeyama D, Sadamoto H, Watanabe T, Wagatsuma A, Kobayashi S, Fujito Y, Yamashita M, Sakakibara M, Kemenes G, Ito E. Requirement of new protein synthesis of a transcription factor for memory consolidation: Paradoxical changes in mRNA and protein levels of C/EBP. J Mol Biol 2006; 356:569-77; PMID:16403525; http://dx.doi.org/10.1016/j.jmb.2005.12.009
  • Wagatsuma A, Azami S, Sakura M, Hatakeyama D, Aonuma H, Ito E. De novo synthesis of CREB in a presynaptic neuron is required for synaptic enhancement involved in memory consolidation. J Neurosci Res 2006; 84:954-60; PMID:16886187; http://dx.doi.org/10.1002/jnr.21012
  • Sadamoto H, Kitahashi T, Fujito Y, Ito E. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain. Front Behav Neurosci 2010; 4:25; PMID:20631825; http://dx.doi.org/10.3389/fnbeh.2010.00025
  • Murakami J, Okada R, Sadamoto H, Kobayashi S, Mita K, Sakamoto Y, Yamagishi M, Hatakeyama D, Otsuka E, Okuta A, et al. Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis. J Neurosci 2013; 33:371-83; PMID:23283349; http://dx.doi.org/10.1523/JNEUROSCI.0679-12.2013
  • Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques 1992; 13:444-9; PMID:1389177
  • Kalinina O, Lebedeva I, Brown J, Silver J. Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res 1997; 25:1999-2004; PMID:9115368; http://dx.doi.org/10.1093/nar/25.10.1999
  • Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA 1999; 96:9236-41
  • Pettersson E, Lundeberg J, Ahmadian A. Generations of sequencing technologies. Genomics 2009; 93:105-11; PMID:18992322; http://dx.doi.org/10.1016/j.ygeno.2008.10.003
  • San Martín A, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I, Ceballo S, Valdebenito R, Baeza-Lehnert F, Alegría K, Contreras-Baeza Y, Garrido-Gerter P, et al. Single-cell imaging tools for brain energy metabolism: a review. Neurophotonics 2014; 1:011004; http://dx.doi.org/10.1117/1.NPh.1.1.011004
  • Huang B, Wu H, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN. Counting low-copy number proteins in a single cell. Science 2007; 315:81-4; PMID:17204646; http://dx.doi.org/10.1126/science.1133992
  • Polat AN, Özlü N. Towards single-cell LC-MS phosphoproteomics. Analyst 2014; 139:4733-49; PMID:25068147; http://dx.doi.org/10.1039/C4AN00463A
  • Devi RV, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron 2015; 68:688-98; PMID:25660660; http://dx.doi.org/10.1016/j.bios.2015.01.066
  • Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: methodology and theory. Electrophoresis 2015; 36:159-78; http://dx.doi.org/10.1002/elps.201400392
  • Crowther JR. The ELISA Guidebook, 2nd edition. Springer, New York, USA 2009
  • Bürgi W, Briner M, Franken N, Kessler AC. One-step sandwich enzyme immunoassay for insulin using monoclonal antibodies. Clin Biochem 1988; 21:311-4; PMID:3069245; http://dx.doi.org/10.1016/S0009-9120(88)80087-0
  • Storch MJ, Alexopoulos A, Kerp L. Evaluation of a solid-phase monoclonal antibody-based enzyme immunoassay for insulin in human serum. J Immunol Methods 1989; 119:53-7; PMID:2651525; http://dx.doi.org/10.1016/0022-1759(89)90380-3
  • Lowry OH, Passonneau JV, Schulz DW, Rock MK. The measurement of pyridine nucleotides by enzymatic cycling. J Biol Chem 1961; 236:2746-55; PMID:14466981
  • Kato T, Berger SJ, Carter JA, Lowry OH. An enzymatic cycling method for nicotinamide-adenine dinucleotide with malic and alcohol dehydrogenases. Anal Biochem 1973; 53:86-97; PMID:4351123; http://dx.doi.org/10.1016/0003-2697(73)90409-0
  • Mashige F, Imai K, Osuga T. A simple and sensitive assay of total serum bile acids. Clin Chim Acta 1976; 70:79-86; PMID:947625; http://dx.doi.org/10.1016/0009-8981(76)90007-3
  • Mashige F, Tanaka N, Maki A, Kamei S, Yamanaka M. Direct spectrophotometry of total bile acids in serum. Clin Chem 1981; 27:1352-6; PMID:6895053
  • Yoshimura T, Kurosawa T, Ikegami S. Tohma M. Substrate specificity of 3a-hydroxysteroid dehydrogenase for the oxidation of fetal bile acids. Bunseki Kagaku 1995; 44:865-9; http://dx.doi.org/10.2116/bunsekikagaku.44.865
  • Ueda S, Oda M, Imamura S, Ohnishi M. Kinetic study of the enzymatic cycling reaction conducted with 3a-hydroxysteroid dehydrogenase in the presence of excessive thio-NAD+ and NADH. Anal Biochem 2004; 332:84-89; PMID:15301952; http://dx.doi.org/10.1016/j.ab.2004.04.035
  • Zhang GH, Cong AR, Xu GB, Li CB, Yang RF, Xia TA. An enzymatic cycling method for the determination of serum total bile acids with recombinant 3α-hydroxysteroid dehydrogenase. Biochem Biophys Res Commun 2005; 326:87-92; PMID:15567156; http://dx.doi.org/10.1016/j.bbrc.2004.11.005
  • Matsuoka T, Ueda S, Matsumoto H, Kawakami M. An ultrasensitive enzymatic method for measuring mevalonic acid in serum. J Lipid Res 2012; 53:1987-92; PMID:22715156; http://dx.doi.org/10.1194/jlr.D028621
  • Iwai A, Yoshimura T, Wada K, Watabe S, Sakamoto Y, Ito E, Miura T. Spectrophotometric method for the assay of steroid 5α-reductase activity of rat liver and prostate microsomes. Anal Sci 2013; 29:455-9; PMID:23574674; http://dx.doi.org/10.2116/analsci.29.455
  • Skålhegg BA. 3a-hydroxysteroid dehydrogenase from Pseudomonas testosteroni: kinetic properties with NAD and its thionicotinamide analogue. Eur J Biochem 1975; 50:603-9; http://dx.doi.org/10.1111/j.1432-1033.1975.tb09901.x
  • Watabe S, Kodama H, Kaneda M, Morikawa M, Nakaishi K, Yoshimura T, Iwai A, Miura T, Ito E. Ultrasensitive enzyme-linked immunosorbent assay (ELISA) of proteins by combination with the thio-NAD cycling method. Biophysics 2014; 10:49-54; http://dx.doi.org/10.2142/biophysics.10.49
  • Niemeyer CM, Adler M, Wacker R. Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol 2005; 23:208-16; PMID:15780713; http://dx.doi.org/10.1016/j.tibtech.2005.02.006
  • Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 2010; 28:595-599; PMID:20495550; http://dx.doi.org/10.1038/nbt.1641
  • Dwarakanathan A. Diabetes update. J Insur Med 2006; 38:20-30; PMID:16642640
  • Cersosimo E, Solis-Herrera C, Trautmann ME, Malloy J, Triplitt CL. Assessment of pancreatic β-cell function: review of methods and clinical applications. Curr Diabetes Rev 2014; 10:2-42; PMID:24524730; http://dx.doi.org/10.2174/1573399810666140214093600
  • Ito E, Kaneda M, Kodama H, Morikawa M, Tai M, Aoki K, Watabe S, Nakaishi K, Hashida S, Tada S, et al. Immunoreactive insulin in DM-patient sera detected by ultrasensitive ELISA with thio-NAD cycling. BioTechniques 2015; 59:359-67; PMID:26651515; http://dx.doi.org/10.2144/000114355
  • Pandori MW, Hackett J, Jr, Louie B, Vallari A, Dowling T, Liska S, Klausner JD. Assessment of the ability of a fourth-generation immunoassay for human immunodeficiency virus (HIV) antibody and p24 antigen to detect both acute and recent HIV infections in a high-risk setting. J Clin Microbiol 2009; 47:2639-42; PMID:19535523; http://dx.doi.org/10.1128/JCM.00119-09
  • George CRR, Robertson PW, Lusk, MJ, Whybin R, Rawlinson W. Prolonged second diagnostic window for human immunodeficiency virus type 1 in a fourth-generation immunoassay: Are alternative testing strategies required? J Clin Microbiol 2014; 52:4105-8; PMID:25210068; http://dx.doi.org/10.1128/JCM.01573-14
  • Nakatsuma A, Kaneda M, Kodama H, Morikawa M, Watabe S, Nakaishi K, Yamashita M, Yoshimura T, Miura T, Ninomiya M, et al. Detection of HIV-1 p24 at attomole level by ultrasensitive ELISA with thio-NAD cycling. Plos One 2015; 10:e0131319
  • Nakatsuma A, Kaneda M, Kodama H, Morikawa M, Watabe S, Nakaishi K, Yamashita M, Yoshimura T, Miura T, Ninomiya M, et al. Ultrasensitive colorimetric detection of HIV-1 p24. Clin Lab Int 2015; 10(6):20-22
  • Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann N Y Acad Sci 1999; 892:146-54; PMID:10842660; http://dx.doi.org/10.1111/j.1749-6632.1999.tb07793.x
  • Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 2003; 46:459-69; PMID:12687327
  • Koshimura J, Fujita H, Narita T, Shimotomai T, Hosoba M, Yoshioka, N, Kakei M, Fujishima H, Ito S. Urinary adiponectin excretion is increased in patients with overt diabetic nephropathy. Biochem Biophys Res Commun 2004; 316:165-9; PMID:15003525; http://dx.doi.org/10.1016/j.bbrc.2004.02.032
  • Shimotomai T, Kakei M, Narita T, Koshimura J, Hosoba M, Kato M, Komatsuda A, Ito S. Enhanced urinary adiponectin excretion in IgA-nephropathy patients with proteinuria. Ren. Fail 2005; 27:323-8; http://dx.doi.org/10.1081/JDI-200056597
  • Morikawa M, Naito R, Mita K, Watabe S, Nakaishi K, Yoshimura T, Miura T, Hashida S, Ito E. Subattomole detection of adiponectin in urine by ultrasensitive ELISA coupled with thio-NAD cycling. Biophys Physicobiol 2015; 12:79-86; http://dx.doi.org/10.2142/biophysico.12.0_79
  • Free AH. Enzymatic determination of glucose. Adv Clin Chem. 1963; 6:67-96; PMID:14281819; http://dx.doi.org/10.1016/S0065-2423(08)60238-3
  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. A stable nonfluorescent derivative of resorfin for the fluorometric de termination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 1997; 253:162-8; PMID:9367498; http://dx.doi.org/10.1006/abio.1997.2391
  • Nagaraja P, Shivakumar A, Shrestha AK. Quantification of hydrogen peroxide and glucose using 3-methyl-2-benzothiazolinonehydrazone hydrochloride with 10,11-dihydro-5H-benz(b,f)azepine as chromogenic probe. Anal Biochem 2009; 395:231-6; PMID:19686697; http://dx.doi.org/10.1016/j.ab.2009.07.053
  • Luo W, Li YS, Yuan J, Zhu L, Liu Z, Tamg H, Liu S. Ultrasensitive fluorometric determination of hydrogen peroxide and glucose by using multiferroic BiFeO3 nanoparticles as a catalyst. Talanta 2010; 81:901-7; PMID:20298871; http://dx.doi.org/10.1016/j.talanta.2010.01.035
  • Hu Y, Zhang Z. Determi nation of free cholesterol based on a novel flow-injection chemiluminescence method by immobilizing enzyme. Luminescence 2008; 23:338-43; PMID:18500700; http://dx.doi.org/10.1002/bio.1042
  • Kim SA, Heinze KG, Schwille P. Fluorescence correlation spectroscopy in living cells. Nature Methods 2007; 4:963-73; PMID:17971781; http://dx.doi.org/10.1038/nmeth1104
  • Nomura Y, Nakamura T, Feng Z, Kinjo M. Direct quantification of gene expression using fluorescence correlation spectroscopy. Curr Pharm Biotechnol 2007; 8:286-90; PMID:17979726; http://dx.doi.org/10.2174/138920107782109958
  • Sadamoto H, Saito K, Muto H, Kinjo M, Ito E. Direct observation of dimerization between different CREB1 isoforms in a living cell. PLoS ONE 2011; 6:e20285; PMID:21673803; http://dx.doi.org/10.1371/journal.pone.0020285
  • Watabe S, Sakamoto Y, Morikawa M, Okada R, Miura T, Ito E. Highly sensitive determination of hydrogen peroxide and glucose by fluorescence correlation spectroscopy. PLoS One 2011; 6:e22955
  • Ito E, Watabe S, Morikawa M, Kodama H, Okada R, Miura T. Detection of H2O2 by fluorescence correlation spectroscopy. Methods Enzymol 2013; 526:135-43; PMID:23791098; http://dx.doi.org/10.1016/B978-0-12-405883-5.00008-9
  • Yan Q, Peng B, Su G, Cohan BE, Major TC, Meyerhoff ME. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration. Anal Chem 2011; 83:8341-6; PMID:21961809; http://dx.doi.org/10.1021/ac201700c