2,063
Views
21
CrossRef citations to date
0
Altmetric
Review

Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis

&
Article: e1174798 | Received 19 Feb 2016, Accepted 31 Mar 2016, Published online: 08 Apr 2016

References

  • Haas A. The phagosome: compartment with a license to kill. Traffic 2007; 8:311-330; PMID:17274798; http://dx.doi.org/10.1111/j.1600-0854.2006.00531.x
  • Becken U, Jeschke A, Veltman K, Haas A. Cell-free fusion of bacteria-containing phagosomes with endocytic compartments. Proc Natl Acad Sci U S A 2010; 107:20726-20731; PMID:21071675; http://dx.doi.org/10.1073/pnas.1007295107
  • Vieira OV, Botelho RJ, Grinstein S. Phagosome maturation: aging gracefully. Biochem J 2002; 366:689-704; PMID:12061891; http://dx.doi.org/10.1042/bj20020691
  • Jeschke A, Zehethofer N, Lindner B, Krupp J, Schwudke D, Haneburger I, Jovic M, Backer JM, Balla T, Hilbi H, et al. Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc Natl Acad Sci U S A 2015; 112:4636-4641; PMID:25825728; http://dx.doi.org/10.1073/pnas.1423456112
  • Fairn GD, Grinstein S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol 2012; 33:397-405; PMID:22560866; http://dx.doi.org/10.1016/j.it.2012.03.003
  • Huotari J, Helenius A. Endosome maturation. EMBO J 2011; 30:3481-3500; PMID:21878991; http://dx.doi.org/10.1038/emboj.2011.286
  • Kinchen JM, Ravichandran KS. Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 2010; 464:778-782; PMID:20305638; http://dx.doi.org/10.1038/nature08853
  • Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell 2010; 141:497-508; PMID:20434987; http://dx.doi.org/10.1016/j.cell.2010.03.011
  • Nordmann M, Cabrera M, Perz A, Bröcker C, Ostrowicz C, Engelbrecht-Vandré S, Ungermann C. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol 2010; 20:1654-1659; PMID:20797862; http://dx.doi.org/10.1016/j.cub.2010.08.002
  • Alvarez-Dominguez C, Barbieri AM, Berón W, Wandinger-Ness A, Stahl PD. Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome-endosome fusion. J Biol Chem 1996; 271:13834-13843; PMID:8662791; http://dx.doi.org/10.1074/jbc.271.23.13834
  • Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 2003; 23:6494-6506; PMID:12944476; http://dx.doi.org/10.1128/MCB.23.18.6494-6506.2003
  • Hackam DJ, Rotstein OD, Zhang WJ, Demaurex N, Woodside M, Tsai O, Grinstein S. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-atpases. J Biol Chem 1997; 272:29810-29820; PMID:9368053; http://dx.doi.org/10.1074/jbc.272.47.29810
  • Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol 2012; 7:61-98; PMID:21910624; http://dx.doi.org/10.1146/annurev-pathol-011811-132445
  • Geisow MJ, D'Arcy Hart P, Young MR. Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J Cell Biol 1981; 89:645-652; PMID:6166620; http://dx.doi.org/10.1083/jcb.89.3.645
  • Vieira OV, Harrison RE, Scott CC, Stenmark H, Alexander D, Liu J, Gruenberg J, Schreiber AD, Grinstein S. Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol Cell Biol 2004; 24:4593-4604; PMID:15121875; http://dx.doi.org/10.1128/MCB.24.10.4593-4604.2004
  • Lu N, Shen Q, Mahoney TR, Liu X, Zhou Z. Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Mol Biol Cell 2011; 22:354-374; PMID:21148288; http://dx.doi.org/10.1091/mbc.E10-09-0756
  • Marion S, Hoffmann E, Holzer D, Le Clainche C, Martin M, Sachse M, Ganeva I, Mangeat P, Griffiths G. Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion. Traffic 2011; 12:421-437; PMID:21210911; http://dx.doi.org/10.1111/j.1600-0854.2011.01158.x
  • Jahraus A, Egeberg M, Hinner B, Habermann A, Sackman E, Pralle A, Faulstich H, Rybin V, Defacque H, Griffiths G. ATP-dependent membrane assembly of F-actin facilitates membrane fusion. Mol Biol Cell 2001; 12:155-170; PMID:11160830; http://dx.doi.org/10.1091/mbc.12.1.155
  • Dayam RM, Saric A, Shilliday RE, Botelho RJ. The Phosphoinositide-Gated Lysosomal Ca(2+) Channel, TRPML1, Is Required for Phagosome Maturation. Traffic 2015; 16:1010-1026; PMID:26010303; http://dx.doi.org/10.1111/tra.12303
  • Steinberg BE, Grinstein S. Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants. J Clin Invest 2008; 118:2002-2011; PMID:18523652; http://dx.doi.org/10.1172/JCI35433
  • Bohdanowicz M, Grinstein S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev 2013; 93:69-106; PMID:23303906; http://dx.doi.org/10.1152/physrev.00002.2012
  • Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 2013; 93:1019-1137; PMID:23899561; http://dx.doi.org/10.1152/physrev.00028.2012
  • Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A. Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 2009; 48:307-343; PMID:19580826; http://dx.doi.org/10.1016/j.plipres.2009.06.001
  • De Matteis MA, Godi A. PI-loting membrane traffic. Nat Cell Biol 2004; 6:487-492; PMID:15170460; http://dx.doi.org/10.1038/ncb0604-487
  • Jean S, Kiger AA. Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol 2012; 13:463-470; PMID:22722608; http://dx.doi.org/10.1038/nrm3379
  • Li X, Wang X, Zhang X, Zhao M, Tsang WL, Zhang Y, Yau RGW, Weisman LS, Xu H. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proc Natl Acad Sci U S A 2013; 110:21165-21170; PMID:24324172; http://dx.doi.org/10.1073/pnas.1311864110
  • Rusten TE, Stenmark H. Analyzing phosphoinositides and their interacting proteins. Nat Methods 2006; 3:251-258; PMID:16554828; http://dx.doi.org/10.1038/nmeth867
  • Kutateladze TG. Translation of the phosphoinositide code by PI effectors. Nat Chem Biol 2010; 6:507-513; PMID:20559318; http://dx.doi.org/10.1038/nchembio.390
  • Carlton JG, Cullen PJ. Coincidence detection in phosphoinositide signaling. Trends Cell Biol 2005; 15:540-547; PMID:16139503; http://dx.doi.org/10.1016/j.tcb.2005.08.005
  • Kim Y, Shanta SR, Zhou LH, Kim KP. Mass spectrometry based cellular phosphoinositides profiling and phospholipid analysis: a brief review. Exp Mol Med 2010; 42:1-11; PMID:19887898; http://dx.doi.org/10.3858/emm.2010.42.1.001
  • Furutani M, Itoh T, Ijuin T, Tsujita K, Takenawa T. Thin layer chromatography-blotting, a novel method for the detection of phosphoinositides. J Biochem 2006; 139:663-670; PMID:16672266; http://dx.doi.org/10.1093/jb/mvj076
  • Purdy GE, Owens RM, Bennett L, Russell DG, Butcher BA. Kinetics of phosphatidylinositol-3-phosphate acquisition differ between IgG bead-containing phagosomes and Mycobacterium tuberculosis-containing phagosomes. Cell Microbiol 2005; 7:1627-1634; PMID:16207249; http://dx.doi.org/10.1111/j.1462-5822.2005.00580.x
  • Sarkes D, Rameh LE. A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides. Biochem J 2010; 428:375-384; PMID:20370717; http://dx.doi.org/10.1042/BJ20100129
  • Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, Stenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 2000; 19:4577-4588; PMID:10970851; http://dx.doi.org/10.1093/emboj/19.17.4577
  • Hammond GRV, Machner MP, Balla T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol 2014; 205:113-126; PMID:24711504; http://dx.doi.org/10.1083/jcb.201312072
  • Kiefer S, Rogger J, Melone A, Mertz AC, Koryakina A, Hamburger M, Küenzi P. Separation and detection of all phosphoinositide isomers by ESI-MS. J Pharm Biomed Anal 2010; 53:552-558; PMID:20399587; http://dx.doi.org/10.1016/j.jpba.2010.03.029
  • Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006; 443:651-657; PMID:17035995; http://dx.doi.org/10.1038/nature05185
  • Wenk MR, Lucast L, Paolo GD, Romanelli AJ, Suchy SF, Nussbaum RL, Cline GW, Shulman GI, McMurray W, Camilli PD. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol 2003; 21:813-817; PMID:12808461; http://dx.doi.org/10.1038/nbt837
  • Idevall-Hagren O, De Camilli P. Detection and manipulation of phosphoinositides. Biochim Biophys Acta 2015; 1851:736-745; PMID:25514766; http://dx.doi.org/10.1016/j.bbalip.2014.12.008
  • Levin R, Grinstein S, Schlam D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta 2014; 1851:805-823.
  • Weber SS, Ragaz C, Hilbi H. Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 2009; 71:1341-1352; PMID:19208094; http://dx.doi.org/10.1111/j.1365-2958.2009.06608.x
  • Pizarro-Cerda J, Kuhbacher A, Cossart P. Phosphoinositides and host-pathogen interactions. Biochim Biophys Acta 2015;1851:911-918.
  • Marcus SL, Wenk MR, Steele-Mortimer O, Finlay BB. A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett 2001; 494:201-207; PMID:11311241; http://dx.doi.org/10.1016/S0014-5793(01)02356-0
  • Bakowski MA, Braun V, Lam GY, Yeung T, Heo WD, Meyer T, Finlay BB, Grinstein S, Brumell JH. The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 2010; 7:453-462; PMID:20542249; http://dx.doi.org/10.1016/j.chom.2010.05.011
  • Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2005; 102:4033-4038; PMID:15753315; http://dx.doi.org/10.1073/pnas.0409716102
  • Puri RV, Reddy PV, Tyagi AK. Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PLoS One 2013; 8:e70514; PMID:23923000; http://dx.doi.org/10.1371/journal.pone.0070514
  • Saikolappan S, Estrella J, Sasindran SJ, Khan A, Armitige LY, Jagannath C, Dhandayuthapani S. The fbpA/sapM double knock out strain of Mycobacterium tuberculosis is highly attenuated and immunogenic in macrophages. PLoS One 2012; 7:e36198; PMID:22574140; http://dx.doi.org/10.1371/journal.pone.0036198
  • Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton AP, Tabernero L. MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J 2007; 406:13-18; PMID:17584180; http://dx.doi.org/10.1042/BJ20070670
  • Singh R, Rao V, Shakila H, Gupta R, Khera A, Dhar N, Singh A, Koul A, Singh Y, Naseema M, et al. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol 2003; 50:751-762; PMID:14617138; http://dx.doi.org/10.1046/j.1365-2958.2003.03712.x
  • Toulabi L, Wu X, Cheng Y, Mao Y. Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem 2013; 288:24518-24527; PMID:23843460; http://dx.doi.org/10.1074/jbc.M113.474239
  • Hsu F, Zhu W, Brennan L, Tao L, Luo ZQ, Mao Y. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A 2012; 109:13567-13572; PMID:22872863; http://dx.doi.org/10.1073/pnas.1207903109
  • Jahraus A, Storrie B, Griffiths G, Desjardins M. Evidence for retrograde traffic between terminal lysosomes and the prelysosomal/late endosome compartment. J Cell Sci 1994; 107:145-157; PMID:8175904.
  • Lu N, Shen Q, Mahoney TR, Neukomm LJ, Wang Y, Zhou Z. Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns(3)P critical for the degradation of apoptotic cells. PLoS Biol 2012; 10:e1001245; PMID:22272187; http://dx.doi.org/10.1371/journal.pbio.1001245
  • Chua J, Deretic V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. J Biol Chem 2004; 279:36982-36992; PMID:15210698; http://dx.doi.org/10.1074/jbc.M405082200
  • Hammond GRV, Balla T. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim Biophys Acta 2015; 1851:746-758.
  • Hammond GRV, Takasuga S, Sasaki T, Balla T. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells. PLoS One 2015; 10:e0139957; PMID:26460749; http://dx.doi.org/10.1371/journal.pone.0139957
  • Bohdanowicz M, Cosío G, Backer JM, Grinstein S. Class I and class III phosphoinositide 3-kinases are required for actin polymerization that propels phagosomes. J Cell Biol 2010; 191:999-1012; PMID:21115805; http://dx.doi.org/10.1083/jcb.201004005
  • Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, Grinstein S. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 2000; 151:1353-1368; PMID:11134066; http://dx.doi.org/10.1083/jcb.151.7.1353
  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11:329-341; PMID:20379207; http://dx.doi.org/10.1038/nrm2882
  • Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, Schreiber AD, Stahl PD, Grinstein S. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 2003; 23:2501-2514; PMID:12640132; http://dx.doi.org/10.1128/MCB.23.7.2501-2514.2003
  • Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 2001; 155:19-25; PMID:11581283; http://dx.doi.org/10.1083/jcb.200107069
  • Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 2001; 154:631-644; PMID:11489920; http://dx.doi.org/10.1083/jcb.200106049
  • Siddhanta U, McIlroy J, Shah A, Zhang Y, Backer JM. Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3′-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J Cell Biol 1998; 143:1647-1659; PMID:9852157; http://dx.doi.org/10.1083/jcb.143.6.1647
  • Thi EP, Lambertz U, Reiner NE. Class IA phosphatidylinositol 3-kinase p110a regulates phagosome maturation. PLoS One 2012; 7:e43668; PMID:22928013; http://dx.doi.org/10.1371/journal.pone.0043668
  • Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 2014; 16:1069-1079; PMID:25327288; http://dx.doi.org/10.1038/ncb3053
  • Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, Bachelot MF, Lamberton A, Mathieu M, Bertrand T, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 2014; 10:1013-1019; PMID:25326666; http://dx.doi.org/10.1038/nchembio.1681
  • Bago R, Malik N, Munson MJ, Prescott AR, Davies P, Sommer E, Shapiro N, Ward R, Cross D, Ganley IG, et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem J 2014; 463:413-427; PMID:25177796; http://dx.doi.org/10.1042/BJ20140889
  • Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, Snead M, Brown R, Morrison A, Wilson S, et al. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J Biol Chem 2014; 289:6120-6132; PMID:24415756; http://dx.doi.org/10.1074/jbc.M113.531426
  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 2006; 125:733-747; PMID:16647110; http://dx.doi.org/10.1016/j.cell.2006.03.035
  • Kim GHE, Dayam RM, Prashar A, Terebiznik M, Botelho RJ. PIKfyve inhibition interferes with phagosome and endosome maturation in macrophages. Traffic 2014; 15:1143-1163; PMID:25041080; http://dx.doi.org/10.1111/tra.12199
  • Sbrissa D, Ikonomov OC, Shisheva A. PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem 1999; 274:21589-21597; PMID:10419465; http://dx.doi.org/10.1074/jbc.274.31.21589
  • Voss MD, Czechtizky W, Li Z, Rudolph C, Petry S, Brummerhop H, Langer T, Schiffer A, Schaefer HL. Discovery and pharmacological characterization of a novel small molecule inhibitor of phosphatidylinositol-5-phosphate 4-kinase, type II, beta. Biochem Biophys Res Commun 2014; 449:327-331; PMID:24845568; http://dx.doi.org/10.1016/j.bbrc.2014.05.024
  • Clarke JH, Giudici ML, Burke JE, Williams RL, Maloney DJ, Marugan J, Irvine RF. The function of phosphatidylinositol 5-phosphate 4-kinase g explored using a specific inhibitor that targets the PI5P-binding site. Biochem J 2015; 466:359-367; PMID:25495341; http://dx.doi.org/10.1042/BJ20141333
  • Mak LH, Vilar R, Woscholski R. Characterisation of the PTEN inhibitor VO-OHpic. J Chem Biol 2010; 3:157-163; PMID:21643420; http://dx.doi.org/10.1007/s12154-010-0041-7
  • Pirruccello M, Nandez R, Idevall-Hagren O, Alcazar-Roman A, Abriola L, Berwick SA, Lucast L, Morel D, De Camilli P. Identification of inhibitors of inositol 5-phosphatases through multiple screening strategies. ACS Chem Biol 2014; 9:1359-1368; PMID:24742366; http://dx.doi.org/10.1021/cb500161z
  • Suwa A, Yamamoto T, Sawada A, Minoura K, Hosogai N, Tahara A, Kurama T, Shimokawa T, Aramori I. Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2. Br J Pharmacol 2009; 158:879-887; PMID:19694723; http://dx.doi.org/10.1111/j.1476-5381.2009.00358.x
  • Hazeki K, Nigorikawa K, Takaba Y, Segawa T, Nukuda A, Masuda A, Ishikawa Y, Kubota K, Takasuga S, Hazeki O. Essential roles of PIKfyve and PTEN on phagosomal phosphatidylinositol 3-phosphate dynamics. FEBS Lett 2012; 586:4010-4015; PMID:23068606; http://dx.doi.org/10.1016/j.febslet.2012.09.043
  • Bohdanowicz M, Balkin DM, De Camilli P, Grinstein S. Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling. Mol Biol Cell 2012; 23:176-187; PMID:22072788; http://dx.doi.org/10.1091/mbc.E11-06-0489
  • Endemann GC, Graziani A, Cantley LC. A monoclonal antibody distinguishes two types of phosphatidylinositol 4-kinase. Biochem J 1991; 273:63-66; PMID:1846531; http://dx.doi.org/10.1042/bj2730063
  • Kamen LA, Levinsohn J, Cadwallader A, Tridandapani S, Swanson JA. SHIP-1 increases early oxidative burst and regulates phagosome maturation in macrophages. J Immunol 2008; 180:7497-7505; PMID:18490750; http://dx.doi.org/10.4049/jimmunol.180.11.7497
  • Ma J, Becker C, Reyes C, Underhill DM. Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production. J Immunol 2014; 192:1356-1360; PMID:24442442; http://dx.doi.org/10.4049/jimmunol.1302835
  • Hoeglinger D, Nadler A, Schultz C. Caged lipids as tools for investigating cellular signaling. Biochim Biophys Acta 2014; 1841:1085-1096; PMID:24713581; http://dx.doi.org/10.1016/j.bbalip.2014.03.012
  • Ozaki S, DeWald DB, Shope JC, Chen J, Prestwich GD. Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc Natl Acad Sci U S A 2000; 97:11286-11291; PMID:11005844; http://dx.doi.org/10.1073/pnas.210197897
  • Subramanian D, Laketa V, Müller R, Tischer C, Zarbakhsh S, Pepperkok R, Schultz C. Activation of membrane-permeant caged PtdIns(3)P induces endosomal fusion in cells. Nat Chem Biol 2010; 6:324-326; PMID:20364126; http://dx.doi.org/10.1038/nchembio.348
  • Raiborg C, Schink KO, Stenmark H. Class III phosphatidylinositol 3-kinase and its catalytic product PtdIns3P in regulation of endocytic membrane traffic. FEBS J 2013; 280:2730-2742; PMID:23289851; http://dx.doi.org/10.1111/febs.12116
  • Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J, Levine B, Yin H. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc Natl Acad Sci U S A 2015; 112:7015-7020; PMID:26038556; http://dx.doi.org/10.1073/pnas.1507263112
  • Vicinanza M, Korolchuk VI, Ashkenazi A, Puri C, Menzies FM, Clarke JH, Rubinsztein DC. PI(5)P regulates autophagosome biogenesis. Mol Cell 2015; 57:219-234; PMID:25578879; http://dx.doi.org/10.1016/j.molcel.2014.12.007
  • Block MR, Glick BS, Wilcox CA, Wieland FT, Rothman JE. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci U S A 1988; 85:7852-7856; PMID:3186695; http://dx.doi.org/10.1073/pnas.85.21.7852
  • Mayer A, Wickner W, Haas A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 1996; 85:83-94; PMID:8620540; http://dx.doi.org/10.1016/S0092-8674(00)81084-3
  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell 1998; 92:759-772; PMID:9529252; http://dx.doi.org/10.1016/S0092-8674(00)81404-X
  • Becken U, Haas A. In vitro fusion asssays with phagosomes; Intracellular Niches of Microbes, WILEY-VHC Press, Weinheim, Germany 2009; 95-105.
  • Blocker A, Severin FF, Habermann A, Hyman AA, Griffiths G, Burkhardt JK. Microtubule-associated protein-dependent binding of phagosomes to microtubules. J Biol Chem 1996; 271:3803-3811; PMID:8631997; http://dx.doi.org/10.1074/jbc.271.7.3803
  • Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 2004; 167:1087-1098; PMID:15611334; http://dx.doi.org/10.1083/jcb.200409068
  • Mayer A, Scheglmann D, Dove S, Glatz A, Wickner W, Haas A. Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion. Mol Biol Cell 2000; 11:807-817; PMID:10712501; http://dx.doi.org/10.1091/mbc.11.3.807
  • Lorente-Rodríguez A, Barlowe C. Requirement for Golgi-localized PI(4)P in fusion of COPII vesicles with Golgi compartments. Mol Biol Cell 2011; 22:216-229; http://dx.doi.org/10.1091/mbc.E10-04-0317
  • Petiot A, Faure J, Stenmark H, Gruenberg J. PI3P signaling regulates receptor sorting but not transport in the endosomal pathway. J Cell Biol 2003; 162:971-979; PMID:12975344; http://dx.doi.org/10.1083/jcb.200303018
  • Mills IG, Jones AT, Clague MJ. Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes. Curr Biol 1998; 8:881-884; PMID:9705936; http://dx.doi.org/10.1016/S0960-9822(07)00351-X
  • Shiozawa K, Goda N, Shimizu T, Mizuguchi K, Kondo N, Shimozawa N, Shirakawa M, Hiroaki H. The common phospholipid-binding activity of the N-terminal domains of PEX1 and VCP/p97. FEBS J 2006; 273:4959-4971; PMID:17018057; http://dx.doi.org/10.1111/j.1742-4658.2006.05494.x
  • Stroupe C, Collins KM, Fratti RA, Wickner W. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J 2006; 25:1579-1589; PMID:16601699; http://dx.doi.org/10.1038/sj.emboj.7601051
  • Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, Bjørkøy G, Johansen T. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 2010; 188:253-269; PMID:20100911; http://dx.doi.org/10.1083/jcb.200907015
  • Dai S, Zhang Y, Weimbs T, Yaffe MB, Zhou D. Bacteria-generated PtdIns(3)P recruits VAMP8 to facilitate phagocytosis. Traffic 2007; 8:1365-1374; PMID:17645435; http://dx.doi.org/10.1111/j.1600-0854.2007.00613.x
  • Jovic M, Kean MJ, Szentpetery Z, Polevoy G, Gingras AC, Brill JA, Balla T. Two phosphatidylinositol 4-kinases control lysosomal delivery of the Gaucher disease enzyme, b–glucocerebrosidase. Mol Biol Cell 2012; 23:1533-1545; PMID:22337770; http://dx.doi.org/10.1091/mbc.E11-06-0553
  • Sridhar S, Patel B, Aphkhazava D, Macian F, Santambrogio L, Shields D, Cuervo AM. The lipid kinase PI4KIIIb preserves lysosomal identity. EMBO J 2013; 32:324-339; PMID:23258225; http://dx.doi.org/10.1038/emboj.2012.341
  • Defacque H, Bos E, Garvalov B, Barret C, Roy C, Mangeat P, Shin HW, Rybin V, Griffiths G. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol Biol Cell 2002; 13:1190-1202; PMID:11950931; http://dx.doi.org/10.1091/mbc.01-06-0314
  • Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 2010; 26:115-136; PMID:20521906; http://dx.doi.org/10.1146/annurev-cellbio-100109-104131
  • Bennett TL, Kraft SM, Reaves BJ, Mima J, O'Brien KM, Starai VJ. LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro. PLoS One 2013; 8:e56798; PMID:23437241; http://dx.doi.org/10.1371/journal.pone.0056798
  • Sreelatha A, Bennett TL, Carpinone EM, O'Brien KM, Jordan KD, Burdette DL, Orth K, Starai VJ. Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes. Proc Natl Acad Sci U S A 2015; 112:100-105; PMID:25453092; http://dx.doi.org/10.1073/pnas.1413764111
  • Ellson CD, Anderson KE, Morgan G, Chilvers ER, Lipp P, Stephens LR, Hawkins PT. Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr Biol 2001; 11:1631-1635; PMID:11676926; http://dx.doi.org/10.1016/S0960-9822(01)00447-X
  • Christoforidis S, McBride HM, Burgoyne RD, Zerial M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999; 397:621-625; PMID:10050856; http://dx.doi.org/10.1038/17618
  • Lawe DC, Chawla A, Merithew E, Dumas J, Carrington W, Fogarty K, Lifshitz L, Tuft R, Lambright D, Corvera S. Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J Biol Chem 2002; 277:8611-8617; PMID:11602609; http://dx.doi.org/10.1074/jbc.M109239200
  • Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151:601-612; PMID:11062261; http://dx.doi.org/10.1083/jcb.151.3.601
  • Pizarro-Cerdá J, Payrastre B, Wang YJ, Veiga E, Yin HL, Cossart P. Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells. Cell Microbiol 2007; 9:2381-2390; http://dx.doi.org/10.1111/j.1462-5822.2007.00967.x
  • Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 2005; 170:607-618; PMID:16103228; http://dx.doi.org/10.1083/jcb.200505128
  • Segawa T, Hazeki K, Nigorikawa K, Morioka S, Guo Y, Takasuga S, Asanuma K, Hazeki O. Inpp5e increases the Rab5 association and phosphatidylinositol 3-phosphate accumulation at the phagosome through an interaction with Rab20. Biochem J 2014; 464:365-375; PMID:25269936; http://dx.doi.org/10.1042/BJ20140916