1,238
Views
7
CrossRef citations to date
0
Altmetric
Review

Structural complexity of filaments formed from the actin and tubulin folds

, , , &
Article: e1242538 | Received 29 Aug 2016, Accepted 23 Sep 2016, Published online: 23 Nov 2016

References

  • Straub FB. Actin. Stud Inst Med Chem Univ Szeged 1942; II:3-15
  • Hanson J, Lowy J. The structure of F-actin and of actin filaments isolated from muscle. J Mol Biol 1963; 6:46-60; http://dx.doi.org/10.1016/S0022-2836(63)80081-9
  • Huxley HE. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 1963; 7:281-308; PMID:14064165; http://dx.doi.org/10.1016/S0022-2836(63)80008-X
  • Ishikawa H, Bischoff R, Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol 1969; 43:312-28; PMID:5344150; http://dx.doi.org/10.1083/jcb.43.2.312
  • Woodrum DT, Rich SA, Pollard TD. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J Cell Biol 1975; 67:231-7; PMID:240859; http://dx.doi.org/10.1083/jcb.67.1.231
  • Yanagida T, Nakase M, Nishiyama K, Oosawa F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 1984; 307:58-60; PMID:6537825; http://dx.doi.org/10.1038/307058a0
  • dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003; 83:433-73; PMID:12663865; http://dx.doi.org/10.1152/physrev.00026.2002
  • Xue B, Robinson RC. Guardians of the actin monomer. Eur J Cell Biol 2013; 92:316-32; PMID:24268205; http://dx.doi.org/10.1016/j.ejcb.2013.10.012
  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC. Atomic structure of the actin:DNase I complex. Nature 1990; 347:37-44; PMID:2395459; http://dx.doi.org/10.1038/347037a0
  • Holmes KC, Popp D, Gebhard W, Kabsch W. Atomic model of the actin filament. Nature 1990; 347:44-9; PMID:2395461; http://dx.doi.org/10.1038/347044a0
  • Schutt CE, Lindberg U, Myslik J, Strauss N. Molecular packing in profilin: actin crystals and its implications. J Mol Biol 1989; 209:735-46; PMID:2585507; http://dx.doi.org/10.1016/0022-2836(89)90603-7
  • Schutt CE, Rozycki MD, Lindberg U. What's the matter with the ribbon? Curr Biol 1994; 4:185-6; PMID:7953529; http://dx.doi.org/10.1016/S0960-9822(94)00046-1
  • Egelman EH. Actin filament structure. The ghost of ribbons past. Curr Biol 1994; 4:79-81; PMID:7922321; http://dx.doi.org/10.1016/S0960-9822(00)00020-8
  • von der Ecken J, Heissler SM, Pathan-Chhatbar S, Manstein DJ, Raunser S. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 2016; 534:724-8; PMID:27324845; http://dx.doi.org/10.1038/nature18295
  • Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics 2006; 7:40; PMID:16515682; http://dx.doi.org/10.1186/1471-2164-7-40
  • Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 2015; 128:2009-19; PMID:25788699; http://dx.doi.org/10.1242/jcs.165563
  • Kimura M. Evolutionary rate at the molecular level. Nature 1968; 217:624-6; PMID:5637732; http://dx.doi.org/10.1038/217624a0
  • Flaherty KM, McKay DB, Kabsch W, Holmes KC. Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc Natl Acad Sci U S A 1991; 88:5041-45; PMID:1828889; http://dx.doi.org/10.1073/pnas.88.11.5041
  • Bork P, Sander C, Valencia A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A 1992; 89:7290-4; PMID:1323828; http://dx.doi.org/10.1073/pnas.89.16.7290
  • Kabsch W, Holmes KC. The actin fold. FASEB J 1995; 9:167-74; PMID:7781919
  • van den Ent F, Amos LA, Lowe J. Prokaryotic origin of the actin cytoskeleton. Nature 2001; 413:39-44; PMID:11544518; http://dx.doi.org/10.1038/35092500
  • Ozyamak E, Kollman J, Agard DA, Komeili A. The bacterial actin MamK: in vitro assembly behavior and filament architecture. J Biol Chem 2013; 288:4265-77; PMID:23204522; http://dx.doi.org/10.1074/jbc.M112.417030
  • van den Ent F, Izore T, Bharat TA, Johnson CM, Lowe J. Bacterial actin MreB forms antiparallel double filaments. Elife 2014; 3:e02634; PMID:24843005
  • Loose M, Mitchison TJ. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 2014; 16:38-46; PMID:24316672; http://dx.doi.org/10.1038/ncb2885
  • van den Ent F, Moller-Jensen J, Amos LA, Gerdes K, Lowe J. F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J 2002; 21:6935-43; PMID:12486014; http://dx.doi.org/10.1093/emboj/cdf672
  • Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, Patterson PC, Pogliano J. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol Microbiol 2009; 73:534-52; PMID:19602153; http://dx.doi.org/10.1111/j.1365-2958.2009.06771.x
  • Dominguez R, Holmes KC. Actin structure and function. Annu Rev Biophys 2011; 40:169-86; PMID:21314430; http://dx.doi.org/10.1146/annurev-biophys-042910-155359
  • Popp D, Narita A, Iwasa M, Maeda Y, Robinson RC. Molecular mechanism of bundle formation by the bacterial actin ParM. Biochem Biophys Res Commun 2010; 391:1598-603; PMID:20026051; http://dx.doi.org/10.1016/j.bbrc.2009.12.078
  • Popp D, Narita A, Ghoshdastider U, Maeda K, Maéda Y, Oda T, Fujisawa T, Onishi H, Ito K, Robinson RC. Polymeric structures and dynamic properties of the bacterial actin AlfA. J Mol Biol 2010; 397:1031-41; PMID:20156449; http://dx.doi.org/10.1016/j.jmb.2010.02.010
  • Popp D, Xu W, Narita A, Brzoska AJ, Skurray RA, Firth N, Ghoshdastider U, Maéda Y, Robinson RC, Schumacher MA. Structure and filament dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA segregation. J Biol Chem 2010; 285:10130-40; PMID:20106979; http://dx.doi.org/10.1074/jbc.M109.071613
  • Popp D, Narita A, Lee LJ, Ghoshdastider U, Xue B, Srinivasan R, Balasubramanian MK, Tanaka T, Robinson RC. Novel actin-like filament structure from Clostridium tetani. J Biol Chem 2012; 287:21121-9; PMID:22514279; http://dx.doi.org/10.1074/jbc.M112.341016
  • Ghoshdastider U, Jiang S, Popp D, Robinson RC. In search of the primordial actin filament. Proc Natl Acad Sci U S A 2015; 112:9150-1; PMID:26178194; http://dx.doi.org/10.1073/pnas.1511568112
  • Braun T, Orlova A, Valegård K, Lindås AC, Schröder GF, Egelman EH. Archaeal actin from a hyperthermophile forms a single-stranded filament. Proc Natl Acad Sci U S A 2015; 112:9340-5; PMID:26124094; http://dx.doi.org/10.1073/pnas.1509069112
  • Jiang S, Narita A, Popp D, Ghoshdastider U, Lee LJ, Srinivasan R, Balasubramanian MK, Oda T, Koh F, Larsson M, et al. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation. Proc Natl Acad Sci U S A 2016; 113:E1200-1205; PMID:26873105; http://dx.doi.org/10.1073/pnas.1600129113
  • Gayathri P, Fujii T, Møller-Jensen J, van den Ent F, Namba K, Löwe J. A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 2012; 338:1334-7; PMID:23112295; http://dx.doi.org/10.1126/science.1229091
  • Woolfson DN, Bartlett GJ, Burton AJ, Heal JW, Niitsu A, Thomson AR, Wood CW. De novo protein design: how do we expand into the universe of possible protein structures? Curr Opin Struct Biol 2015; 33:16-26; PMID:26093060; http://dx.doi.org/10.1016/j.sbi.2015.05.009
  • Popp D, Narita A, Lee LJ, Larsson M, Robinson RC. Microtubule-like properties of the bacterial actin homolog ParM-R1. J Biol Chem 2012; 287:37078-88; PMID:22908230; http://dx.doi.org/10.1074/jbc.M111.319491
  • Neuhaus JM, Wanger M, Keiser T, Wegner A. Treadmilling of actin. J Muscle Res Cell Motil 1983; 4:507-27; PMID:6358256; http://dx.doi.org/10.1007/BF00712112
  • Lindås AC, Chruszcz M, Bernander R, Valegård K. Structure of crenactin, an archaeal actin homologue active at 90°C. Acta Crystallogr D Biol Crystallogr 2014; 70:492-500; http://dx.doi.org/10.1107/S1399004714000935
  • Sui H, Downing KH. Structural basis of interprotofilament interaction and lateral deformation of microtubules. Structure 2010; 18:1022-31; PMID:20696402; http://dx.doi.org/10.1016/j.str.2010.05.010
  • Aylett CH, Wang Q, Michie KA, Amos LA, Lowe J. Filament structure of bacterial tubulin homologue TubZ. Proc Natl Acad Sci U S A 2010; 107:19766-71; PMID:20974911; http://dx.doi.org/10.1073/pnas.1010176107
  • Oliva MA, Cordell SC, Lowe J. Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 2004; 11:1243-50; PMID:15558053; http://dx.doi.org/10.1038/nsmb855
  • Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ. Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 2011; 9:e1001213; PMID:22162949; http://dx.doi.org/10.1371/journal.pbio.1001213