1,346
Views
13
CrossRef citations to date
0
Altmetric
Article Addendum

Underground roots monitor aboveground environment by sensing stem-piped light

, &
Article: e1261769 | Received 10 Nov 2016, Accepted 13 Nov 2016, Published online: 09 Dec 2016

References

  • Jiao Y, Lau OS, Deng XW. Light-regulated transcriptional networks in higher plants. Nat Rev Genet 2007; 8:217-30; PMID:17304247; http://dx.doi.org/10.1038/nrg2049
  • Chenu A, Scholes GD. Coherence in energy transfer and photosynthesis. Annu Rev Phys Chem 2015; 66:69-96; PMID:25493715; http://dx.doi.org/10.1146/annurev-physchem-040214-121713
  • Galvão VC, Fankhauser C. Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol 2015; 34:46-53; PMID:25638281; http://dx.doi.org/10.1016/j.conb.2015.01.013
  • Cashmore AR, Jarillo JA, Wu YJ, Liu D. Cryptochromes: blue light receptors for plants and animals. Science 1999; 284:760-5; PMID:10221900; http://dx.doi.org/10.1126/science.284.5415.760
  • Christie JM. Phototropin blue-light receptors. Annu Rev Plant Biol 2007; 58:21-45; PMID:17067285; http://dx.doi.org/10.1146/annurev.arplant.58.032806.103951
  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011; 332:103-6; PMID:21454788; http://dx.doi.org/10.1126/science.1200660
  • Smith H. Phytochromes and light signal perception by plants-an emerging synthesis. Nature 2000; 407:585-91; PMID:11034200; http://dx.doi.org/10.1038/35036500
  • Xu X, Paik I, Zhu L, Huq E. Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci 2015; 20:641-50; PMID:26440433; http://dx.doi.org/10.1016/j.tplants.2015.06.010
  • Mathews S. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 2006; 15:3483-503; PMID:17032252; http://dx.doi.org/10.1111/j.1365-294X.2006.03051.x
  • Franklin KA, Quail PH. Phytochrome functions in Arabidopsis development. J Exp Bot 2010; 61:11-24; PMID:19815685; http://dx.doi.org/10.1093/jxb/erp304
  • Sharrock RA, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol 2002; 130:442-56; PMID:12226523; http://dx.doi.org/10.1104/pp.005389
  • Salisbury FJ, Hall A, Grierson CS, Halliday KJ. Phytochrome coordinates Arabidopsis shoot and root development. Plant J 2007; 50:429-38; PMID:17419844; http://dx.doi.org/10.1111/j.1365-313X.2007.03059.x
  • Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, Kim JI, Oh Y, Fragoso V, Shin K, et al. Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 2016; 9:ra106; PMID:27803284; http://dx.doi.org/10.1126/scisignal.aaf6530
  • Correll MJ, Kiss JZ. The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol 2005; 46:317-23; PMID:15695459; http://dx.doi.org/10.1093/pcp/pci038
  • Costigan SE, Warnasooriya SN, Humphries BA, Montgomery BL. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis. Plant Physiol 2011; 157:1138-50; PMID:21875894; http://dx.doi.org/10.1104/pp.111.184689
  • Dyachok J, Zhu L, Liao F, He J, Huq E, Blancaflor EB. SCAR mediates light-induced root elongation in Arabidopsis through photoreceptors and proteasomes. Plant Cell 2011; 23:3610-26; PMID:21972261; http://dx.doi.org/10.1105/tpc.111.088823
  • Mandoli DF, Tepperman J, Huala E, Briggs WR. Photobiology of diagravitropic maize roots. Plant Physiol 1984; 75:359-63; PMID:16663626; http://dx.doi.org/10.1104/pp.75.2.359
  • Feldman LJ, Briggs WR. Light-regulated gravitropism in seedling roots of maize. Plant Physiol 1987; 83:241-3; PMID:11539030; http://dx.doi.org/10.1104/pp.83.2.241
  • Mandoli DF, Briggs WR. Optical properties of etiolated plant tissues. Proc Natl Acad Sci U S A 1982; 79:2902-6; PMID:16593186
  • Sun Q, Yoda K, Suzuki M, Suzuki H. Vascular tissue in the stem and roots of woody plants can conduct light. J Exp Bot 2003; 54:1627-35; PMID:12730266; http://dx.doi.org/10.1093/jxb/erg167
  • Sun Q, Yoda K, Suzuki H. Internal axial light conduction in the stems and roots of herbaceous plants. J Exp Bot 2005; 56:191-203; PMID:15533879; http://dx.doi.org/10.1093/jxb/eri019
  • Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schafer E, Nagy F. Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 1999; 11:1445-56; PMID:10449579; http://dx.doi.org/10.1105/tpc.11.8.1445
  • Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 2000; 405:462-6; PMID:10839542; http://dx.doi.org/10.1038/35013076
  • Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y, et al. COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 2012; 139:3402-12; PMID:22912415; http://dx.doi.org/10.1242/dev.078212
  • Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 2016; 26:640-6; PMID:26877080; http://dx.doi.org/10.1016/j.cub.2015.12.066
  • James AB, Monreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, Nimmo HG. The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science 2008; 322:1832-5; PMID:19095940; http://dx.doi.org/10.1126/science.1161403
  • McCluney R. Color-rendering of daylight from water-filled light pipes. Sol Energ Mat 1990; 21:191-206; http://dx.doi.org/10.1016/0165-1633(90)90053-4