2,267
Views
26
CrossRef citations to date
0
Altmetric
Research Paper

Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis

, , , , , , , ORCID Icon & ORCID Icon show all
Article: e1309488 | Received 16 Mar 2017, Accepted 16 Mar 2017, Published online: 10 May 2017

References

  • Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 2009; 89:847-85; PMID:19584315; https://doi.org/10.1152/physrev.00029.2008
  • Postea O, Biel M. Exploring HCN channels as novel drug targets. Nat Revi Drug Discov 2011; 10:903-14; PMID:22094868
  • Baruscotti M, Bucchi A, DiFrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 2005; 107:59-79; https://doi.org/10.1016/j.pharmthera.2005.01.005
  • Herrmann S, Schnorr S, Ludwig A. HCN Channels—modulators of cardiac and neuronal excitability. Int J Mol Sci 2015; 16:1429-47; PMID:25580535; https://doi.org/10.3390/ijms16011429
  • Bucchi A, Barbuti A, DiFrancesco D. Funny current and cardiac rhythm: insights from HCN knockout and transgenic mouse models. Front Physiol 2012; 49-58; PMID:22457651
  • Accili E, Proenza C, Baruscotti M, DiFrancesco D. From funny current to HCN channels: 20 years of excitation. Physiology 2002; 17:32-7
  • Cerbai E, Pino R, Sartiani L, Mugelli A. Influence of postnatal-development on If occurrence and properties in neonatal rat ventricular myocytes. Cardiovasc Res 1999; 42:416-23; PMID:10533577; https://doi.org/10.1016/S0008-6363(99)00037-1
  • Robinson R, Yu H, Chang F, Cohen IS. Developmental change in the voltage-dependence of the pacemaker current, if, in rat ventricle cells. Pflügers Arch 1997; 433:533-5; PMID:9000433; https://doi.org/10.1007/s004240050309
  • Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, Kodama I. If current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 2001; 88:536-42; PMID:11249878; https://doi.org/10.1161/01.RES.88.5.536
  • Vicente-Steijn R, Passier R, Wisse LJ, Schalij MJ, Poelmann RE, Gittenberger-de Groot AC, Jongbloed MR. Funny current channel HCN4 delineates the developing cardiac conduction system in chicken heart. Heart Rhythm 2011; 8:1254-63; PMID:21421080; https://doi.org/10.1016/j.hrthm.2011.03.043
  • Garcia-Frigola C, Shi Y, Evans SM. Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 2003; 3:777-83; PMID:14643687; https://doi.org/10.1016/S1567-133X(03)00125-X
  • Liang X, Evans SM, Sun Y. Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med 2015; 25:1-9; PMID:25442735; https://doi.org/10.1016/j.tcm.2014.08.009
  • Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, Chen Y, Chen J, Sun Y, Evans SM. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res 2013; 113:399-407; PMID:23743334; https://doi.org/10.1161/CIRCRESAHA.113.301588
  • Stieber J, Herrmann S, Feil S, Löster J. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci 2003; 100:15235-40; https://doi.org/10.1073/pnas.2434235100
  • Harzheim D, Pfeiffer KH, Fabritz L, Kremmer E, Buch T, Waisman A, Kirchhof P, Kaupp UB, Seifert R. Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic development and requires cyclic AMP. EMBO J 2008; 27:692-703; PMID:18219271; https://doi.org/10.1038/emboj.2008.3
  • Afouda BA, Hoppler S. Xenopus explants as an experimental model system for studying heart development. Trends Cardiovasc Med 2009; 19:220-6; PMID:20382345; https://doi.org/10.1016/j.tcm.2010.01.001
  • Duncan AR, Khokha MK. Xenopus as a model organism for birth defects—Congenital heart disease and heterotaxy. Semin Cell Dev Biol 2016; 51:73-79; https://doi.org/10.1016/j.semcdb.2016.02.022
  • Mohun T, Leong L, Weninger W, Sparrow D. The morphology of heart development in Xenopus laevis. Dev Biol 2000; 218:74-88; PMID:10644412; https://doi.org/10.1006/dbio.1999.9559
  • Kolker SJ, Tajchman U, Weeks DL. Confocal imaging of early heart development in Xenopus laevis. Dev Biol 2000; 218:64-73; PMID:10644411; https://doi.org/10.1006/dbio.1999.9558
  • Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, Karimi K, Zorn AM, Vize PD. Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res 2015; 43:D756-63; PMID:25313157; https://doi.org/10.1093/nar/gku956
  • Mohun T, Orford R, Shang C. The origins of cardiac tissue in the amphibian, Xenopus laevis. Trends Cardiovasc Med 2003; 13:244-8; PMID:12922021; https://doi.org/10.1016/S1050-1738(03)00102-6
  • Warkman AS, Krieg PA. Xenopus as a model system for vertebrate heart development. Seminars Cell Dev Biol 2007; 18:46-53; https://doi.org/10.1016/j.semcdb.2006.11.010
  • Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 2003; 258:1-19; PMID:12781678; https://doi.org/10.1016/S0012-1606(03)00112-X
  • Pitcairn E, McLaughlin KA. Bioelectric signaling coordinates patterning decisions during embryogenesis. Trends Dev Biol 2016; 9:1-9
  • Levin M. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. BioEssays 2012; 34:205-17; PMID:22237730; https://doi.org/10.1002/bies.201100136
  • Levin M, Stevenson C. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng 2012; 14:295-323; PMID:22809139; https://doi.org/10.1146/annurev-bioeng-071811-150114
  • Levin M. Large-scale biophysics: ion flows and regeneration. Trends Cell Biol 2007; 17:261-70; PMID:17498955; https://doi.org/10.1016/j.tcb.2007.04.007
  • Funk RH, Thiede C. Ion gradients and electric fields-an intrinsic part of biological processes. J Clin Exp Oncol 2014; S1, 004; https://doi.org/10.4172/2324-9110.S1-004&hl=en&num=20&as_sdt=0,22
  • Levin M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 2014; 592:2295-305; PMID:24882814; https://doi.org/10.1113/jphysiol.2014.271940
  • Perathoner S, Daane JM, Henrion U, Seebohm G, Higdon CW, Johnson SL, Nüsslein-Volhard C, Harris MP. Bioelectric signaling regulates size in zebrafish fins. PLoS Genet 2014; 10:e1004080; PMID:24453984; https://doi.org/10.1371/journal.pgen.1004080
  • Pai VP, Lemire JM, Paré JF, Lin G, Chen Y, Levin M. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via notch signaling and regulation of proliferation. J Neurosci 2015; 35:4366-85; PMID:25762681; https://doi.org/10.1523/JNEUROSCI.1877-14.2015
  • Pai VP, Aw S, Shomrat T, Lemire JM, Levin M. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 2012; 139:313-323; PMID:22159581; https://doi.org/10.1242/dev.073759
  • Shu X, Cheng K, Patel N, Chen F, Joseph E. Na, K-ATPase is essential for embryonic heart development in the zebrafish. Development 2003; 130:6165-73; PMID:14602677; https://doi.org/10.1242/dev.00844
  • Yuan S. The small heart mutation reveals novel roles of Na+/K+-ATPase in maintaining ventricular cardiomyocyte morphology and viability in zebrafish. Circ Res 2004; 95:595-603; PMID:15297381; https://doi.org/10.1161/01.RES.0000141529.48143.6e
  • Chong JX, McMillin MJ, Shively KM, Beck AE, Marvin CT, Armenteros JR, Buckingham KJ, Nkinsi NT, Boyle EA, Berry MN, et al. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am J Hum Genet 2015; 96:462-73; PMID:25683120; https://doi.org/10.1016/j.ajhg.2015.01.003
  • Barel O, Shalev SA, Ofir R, Cohen A, Zlotogora J, Shorer Z, Mazor G, Finer G, Khateeb S, Zilberberg N, et al. Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am J Hum Genet 2008; 83:193-9; PMID:18678320; https://doi.org/10.1016/j.ajhg.2008.07.010
  • Masotti A, Uva P, Davis-Keppen L. Keppen-lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Am J Hum Genet 2015; 96:295-300; PMID:25620207; https://doi.org/10.1016/j.ajhg.2014.12.011
  • Tristani-Firouzi M, Etheridge SP. Kir 2.1 channelopathies: the Andersen–Tawil syndrome. Pflügers Archiv-Euro J Physiol 2010; 460:289-94; PMID:20306271; https://doi.org/10.1007/s00424-010-0820-6
  • Levin M. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell 2014; 25:3835-50; PMID:25425556; https://doi.org/10.1091/mbc.E13-12-0708
  • Bates E. Ion channels in development and cancer. Annu Rev Cell Dev Biol 2015; 31:231-47; PMID:26566112; https://doi.org/10.1146/annurev-cellbio-100814-125338
  • Lee YH, Saint-Jeannet JP. Cardiac neural crest is dispensable for outflow tract septation in Xenopus. Development 2011; 138:2025-34; PMID:21490068; https://doi.org/10.1242/dev.061614
  • Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM, Conlon FL. Tcf21 regulates the specification and maturation of proepicardial cells. Development 2013; 140:2409-21; PMID:23637334; https://doi.org/10.1242/dev.093385
  • Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, Robinson RB, Dixon JE, McKinnon D, Cohen IS. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 1999; 85:e1-6; PMID:10400919; https://doi.org/10.1161/01.RES.85.1.e1
  • Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, Morita H, Higashiuesato Y, Hirano Y, Yasunami M, et al. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem 2004; 279:27194-8; PMID:15123648; https://doi.org/10.1074/jbc.M311953200
  • Nof E, Luria D, Brass D, Marek D, Lahat H, Reznik-Wolf H, Pras E, Dascal N, Eldar M, Glikson M. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation 2007; 116:463-70; PMID:17646576; https://doi.org/10.1161/CIRCULATIONAHA.107.706887
  • Xue T, Marbán E, Li RA. Dominant-negative suppression of HCN1- and HCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure-function relationships and multimerization. Circ Res 2002; 90:1267-73; PMID:12089064; https://doi.org/10.1161/01.RES.0000024390.97889.C6
  • Smith J, Price B, Green J, Weigel D, Herrmann B. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 1991; 67:79-87; PMID:1717160; https://doi.org/10.1016/0092-8674(91)90573-H
  • Pannese M, Polo C, Andreazzoli M, Vignali R, Kablar B, Barsacchi G, Boncinelli E. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 1995; 121:707-20; PMID:7720578
  • Foley AC, Korol O, Timmer AM, Mercola M. Multiple functions of Cerberus cooperate to induce heart downstream of Nodal. Dev Biol 2007; 303:57-65; PMID:17123501; https://doi.org/10.1016/j.ydbio.2006.10.033
  • Sampath K, Cheng A, Frisch A, Wright C. Functional differences among Xenopus nodal-related genes in left-right axis determination. Development 1997; 124:3293-302; PMID:9310324
  • Lohr JL, Danos MC, Yost HJ. Left-right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Dev Suppl 1997; 124:1465-72
  • Wagner M, Siddiqui MA. Signal transduction in early heart development (I): cardiogenic induction and heart tube formation. Exp Biol Med 1997; 232:852-65
  • Branford WW, Essner JJ, Yost HJ. Regulation of gut and heart left–right asymmetry by context-dependent interactions between Xenopus lefty and BMP4 signaling. Dev Biol 2000; 223:291-306; PMID:10882517; https://doi.org/10.1006/dbio.2000.9739
  • Cheng A, Thisse B, Thisse C, Wright C. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and LR axis development in xenopus. Development 2000; 127:1049-61; PMID:10662644
  • Chang H, Zwijsen A, Vogel H, Huylebroeck D, Matzuk MM. Smad5 is essential for left–right asymmetry in mice. Dev Biol 2000; 219:71-8; PMID:10677256; https://doi.org/10.1006/dbio.1999.9594
  • Breckenridge RA, Mohun TJ, Amaya E. A role for BMP signalling in heart looping morphogenesis in Xenopus. Dev Biol 2001; 232:191-203; PMID:11254357; https://doi.org/10.1006/dbio.2001.0164
  • Chocron S, Verhoeven MC, Rentzsch F, Hammerschmidt M, Bakkers J. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol 2007; 305:577-88; PMID:17395172; https://doi.org/10.1016/j.ydbio.2007.03.001
  • Chen JN, van Eeden FJ, Warren KS, Chin A, Nüsslein-Volhard C, Haffter P, Fishman MC. Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 1997; 124:4373-82; PMID:9334285
  • Ai D, Liu W, Ma L, Dong F, Lu MF, Wang D, Verzi MP, Cai C, Gage PJ, Evans S, et al. Pitx2 regulates cardiac left–right asymmetry by patterning second cardiac lineage-derived myocardium. Dev Biol 2006; 296:437-49; PMID:16836994; https://doi.org/10.1016/j.ydbio.2006.06.009
  • Shiratori H, Yashiro K, Shen MM, Hamada H. Conserved regulation and role of Pitx2 in situs-specific morphogenesis of visceral organs. Development 2006; 133:3015-25; PMID:16835440; https://doi.org/10.1242/dev.02470
  • Campione M, Steinbeisser H, Schweickert A, Deissler K, van Bebber F, Lowe LA, Nowotschin S, Viebahn C, Haffter P, Kuehn MR, et al. The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 1999; 126:1225-34; PMID:10021341
  • Dagle JM, Sabel JL, Littig JL, Sutherland LB, Kolker SJ, Weeks DL. Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopus laevis. Dev Biol 2003; 262:268-81; PMID:14550790; https://doi.org/10.1016/S0012-1606(03)00389-0
  • Shi Y, Katsev S, Cai C, Evans S. BMP signaling is required for heart formation in vertebrates. Dev Biol 2000; 224:226-37; PMID:10926762; https://doi.org/10.1006/dbio.2000.9802
  • Danos MC, Yost HJ. Linkage of Cardiac Left-Right Asymmetry and Dorsal-Anterior Development in Xenopus. Development 1995; 121:1467-74; PMID:7789276
  • Peyrot SM, Wallingford JB, Harland RM. A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. Dev Biol 2011; 352:254-66; PMID:21276789; https://doi.org/10.1016/j.ydbio.2011.01.021
  • Sampath K, Cheng AM, Frisch A, Wright CV. Functional differences among Xenopus nodal-related genes in left-right axis determination. Development 1997; 124:3293-302; PMID:9310324
  • Essner JJ, Branford WW, Zhang J, Yost HJ. Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 2000; 127:1081-93; PMID:10662647
  • Duhme N, Schweizer PA, Thomas D, Becker R, Schröter J, Barends TR, Schlichting I, Draguhn A, Bruehl C, Katus HA, et al. Altered HCN4 channel C-linker interaction is associated with familial tachycardia–bradycardia syndrome and atrial fibrillation. Euro Heart J 2013; 34:2768-75; PMID:23178648; https://doi.org/10.1093/eurheartj/ehs391
  • McDowell GS, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a non-linear, regulative pathway underlies left-right patterning. bioRxiv 2016; 371(1710):pii: 20150409; 052191
  • Dahal GJ, Rawson J, Gassaway B, Kwok B, Tong Y, Ptácek LJ, Bates E. An inwardly rectifying K+ channel is required for patterning. Development 2012; 139:3653-64; PMID:22949619; https://doi.org/10.1242/dev.078592
  • Bates EA. A potential molecular target for morphological defects of fetal alcohol syndrome: Kir2. 1. Curr Opin Genet Dev 2013; 23:324-9; https://doi.org/10.1016/j.gde.2013.05.001
  • Adams DS, Uzel SG, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 2016; 594(12):3245-70
  • Arcangeli A, Becchetti A. Complex functional interaction between integrin receptors and ion channels. Trends Cell Biol 2006; 16:631-9; PMID:17064899; https://doi.org/10.1016/j.tcb.2006.10.003
  • Greene D, Kang S, Kosenko A, Hoshi N. Adrenergic regulation of HCN4 channel requires protein association with β2-adrenergic receptor. J Biol Chem 2012; 287:23690-7; PMID:22613709; https://doi.org/10.1074/jbc.M112.366955
  • Paine-Saunders S, Viviano BL, Economides AN, Saunders S. Heparan sulfate proteoglycans retain Noggin at the cell surface a potential mechanism for shaping bone morphogenetic protein gradients. J Biol Chem 2002; 277:2089-96; PMID:11706034; https://doi.org/10.1074/jbc.M109151200
  • Raya A, Kawakami Y, Rodríguez-Esteban C, Ibañes M, Rasskin-Gutman D, Rodríguez-León J, Büscher D, Feijó JA, Izpisúa Belmonte JC. Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 2004; 427:121-8; PMID:14712268; https://doi.org/10.1038/nature02190
  • Pai VP, Martyniuk CJ, Echeverri K, Sundelacruz S, Kaplan DL, Levin M. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation. Regeneration 2015; 3(1):3-25; PMID:27499876
  • Tseng AS, Levin M. Transducing bioelectric signals into epigenetic pathways during tadpole tail regeneration. Anat Rec 2012; 295:1541-51; https://doi.org/10.1002/ar.22495
  • Pai VP, Martyniuk CJ, Echeverri K, Sundelacruz S, Kaplan DL, Levin M. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation. Regeneration (Oxf) 2016; 3:3-25; PMID:27499876; https://doi.org/10.1002/reg2.48
  • Spencer AD, Lemire JM, Kramer RH, Levin M. Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos. Int J Dev Biol 2014; 58:851-61; PMID:25896279; https://doi.org/10.1387/ijdb.140207ml
  • Niewkoop PD, Faber J. Normal Table of Xenopus laevis (Daudin). (Garland Publishing, Inc., 1994)
  • Kuzhikandathil EV, Oxford GS. Dominant-negative mutants identify a role for GIRK channels in D3 dopamine receptor-mediated regulation of spontaneous secretory activity. J Gen Physiol 2000; 115:697-706; PMID:10828244; https://doi.org/10.1085/jgp.115.6.697
  • Preisig-Müller R, Schlichthörl G, Goerge T, Heinen S, Brüggemann A, Rajan S, Derst C, Veh RW, Daut J. Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen's syndrome. Proc Natl Acad Sci U S A 2002; 99:7774-9; PMID:12032359; https://doi.org/10.1073/pnas.102609499
  • Ye B, Valdivia CR, Ackerman MJ, Makielski JC. A common human SCN5A polymorphism modifies expression of an arrhythmia causing mutation. Physiol Genomics 2003; 12:187-93; PMID:12454206; https://doi.org/10.1152/physiolgenomics.00117.2002
  • Ye B, Balijepalli RC, Foell JD, Kroboth S, Ye Q, Luo YH, Shi NQ. Caveolin-3 associates with and affects the function of hyperpolarization-activated cyclic nucleotide-gated channel 4. Biochemistry 2008; 47:12312-8; PMID:19238754; https://doi.org/10.1021/bi8009295
  • Ye B, Nerbonne JM. Proteolytic processing of HCN2 and co-assembly with HCN4 in the generation of cardiac pacemaker channels. J Biol Chem 2009; 284:25553-9; PMID:19574228; https://doi.org/10.1074/jbc.M109.007583
  • Harland R. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 1991; 36:685-95; PMID:1811161
  • Dale L, Howes G, Price BM, Smith JC. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 1992; 115:573-85; PMID:1425340
  • Meno C, Ito Y, Saijoh Y, Matsuda Y, Tashiro K, Kuhara S, Hamada H. Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 1997; 2:513-24; https://doi.org/10.1046/j.1365-2443.1997.1400338.x
  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 1994; 76:761-75; PMID:8124714; https://doi.org/10.1016/0092-8674(94)90514-2
  • Kelly OG, Melton DA. Development of the pancreas in Xenopus laevis. Dev Dyn 2000; 218:615-27; PMID:10906780; https://doi.org/10.1002/1097-0177(2000)9999:9999%3c::AID-DVDY1027%3e3.0.CO;2-8
  • Team RC. R: A language and environment for statistical computing. 2013; https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
  • Fife D. Fife package. R Package Version 1.0 2015; https://cran.r-project.org/web/packages/fifer/fifer.pdf