796
Views
1
CrossRef citations to date
0
Altmetric
Article Addendum

Molecular motors and nuclear movements in muscle

ORCID Icon & ORCID Icon
Article: e1319537 | Received 06 Apr 2017, Accepted 11 Apr 2017, Published online: 26 May 2017

References

  • Cadot B, Gache V, Gomes ER. Moving and positioning the nucleus in skeletal muscle – one step at a time. Nucleus 2015; 6:373-81; PMID:26338260; https://doi.org/10.1080/19491034.2015.1090073
  • Cadot B, Gache V, Vasyutina E, Falcone S, Birchmeier C, Gomes ER. Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep 2012; 13:741-9; PMID:22732842; https://doi.org/10.1038/embor.2012.89
  • Metzger T, Gache V, Xu M, Cadot B, Folker ES, Richardson BE, Gomes ER, Baylies MK. MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 2012; 484:120-4; PMID:22425998; https://doi.org/10.1038/nature10914
  • Tassin AM, Maro B, Bornens M. Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol 1985; 100:35-46; PMID:3880758; https://doi.org/10.1083/jcb.100.1.35
  • Gache V, Gomes ER, Cadot B. Microtubule motors involved in nuclear movement during skeletal muscle differentiation. Mol Biol Cell 2017; 28(7):865-74; In press; PMID:28179457; https://doi.org/10.1091/mbc.E16-06-0405
  • Chen IH, Huber M, Guan T, Bubeck A, Gerace L. Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis. BMC Cell Biol 2006; 7:38; PMID:17062158; https://doi.org/10.1186/1471-2121-7-38
  • Wilson MH, Holzbaur ELF. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 2015; 142:218-28; PMID:25516977; https://doi.org/10.1242/dev.114769
  • Müller MJ, Klumpp S, Lipowsky R. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci U S A 2008; 105(12):4609-14; PMID:18347340; https://doi.org/10.1073/pnas.0706825105
  • Hancock WO. Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol 2014; 15(9):615-28; PMID:25118718; https://doi.org/10.1038/nrm385
  • Asaba N, Hanada T, Takeuchi A, Chishti AH. Direct interaction with a kinesin-related motor mediates transport of mammalian discs large tumor suppressor homologue in epithelial cells. J Biol Chem 2003; 278:8395-400; PMID:12496241; https://doi.org/10.1074/jbc.M210362200
  • Horiguchi K, Hanada T, Fukui Y, Chishti AH. Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J Cell Biol 2006; 174:425-36; PMID:16864656; https://doi.org/10.1083/jcb.200604031
  • Kanai Y, Wang D, Hirokawa N. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. J Cell Biol 2014; 204:395-408; PMID:24469637; https://doi.org/10.1083/jcb.201309066
  • Lamason RL, Kupfer A, Pomerantz JL. The dynamic distribution of CARD11 at the immunological synapse is regulated by the inhibitory kinesin GAKIN. Mol Cell 2010; 40:798-809; PMID:21145487; https://doi.org/10.1016/j.molcel.2010.11.007
  • Xing BM, Yang YR, Du JX, Chen HJ, Qi C, Huang ZH, Zhang Y, Wang Y. Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. J Neurosci 2012; 32:14709-21; PMID:23077056; https://doi.org/10.1523/JNEUROSCI.1634-12.2012
  • Hanada T, Lin L, Tibald EV, Reinherz EL, Chishti A H. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J Biol Chem 2000; 275:28774-84; PMID:10859302; https://doi.org/10.1074/jbc.M000715200
  • Venkateswarlu K, Hanada T, Chishti AH. Centaurin-alpha1 interacts directly with kinesin motor protein KIF13B. J Cell Sci 2005; 118:2471-84; PMID:15923660; https://doi.org/10.1242/jcs.02369
  • Lu MS, Prehoda KE. A NudE/14-3-3 pathway coordinates dynein and the kinesin Khc73 to position the mitotic spindle. Dev Cell 2013; 26:369-80; PMID:23987511; https://doi.org/10.1016/j.devcel.2013.07.021
  • Saito N, Okada Y, Noda Y, Kinoshita Y, Kondo S, Hirokawa N. KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 1997; 18:425-38; PMID:9115736; https://doi.org/10.1016/S0896-6273(00)81243-X
  • Herault F, Vincent A, Dameron O, Le Roy P, Cherel P, Damon M. The longissimus and semimembranosus muscles display marked differences in their gene expression profiles in pig. PLoS One 2014; 9:20145; https://doi.org/10.1371/journal.pone.0096491
  • Nath S, Bananis E, Sarkar S, Stockert RJ, Sperry AO, Murray JW, Wolkoff AW. Kif5B and Kifc1 interact and are required for motility and fission of early endocytic vesicles in mouse liver. Mol Biol Cell 2007; 18:1839-49; PMID:17360972; https://doi.org/10.1091/mbc.E06-06-0524
  • Hu J-R, Liu M, Wang DH, Hu YJ, Tan FQ, Yang WX. Molecular characterization and expression analysis of a KIFC1-like kinesin gene in the testis of Eumeces chinensis. Mol Biol Rep 2013; 40:6645; https://doi.org/10.1007/s11033-013-2779-9
  • Morris EJ, Nader GPF, Ramalingam N, Bartolini F, Gundersen GG. Kif4 interacts with EB1 and stabilizes microtubules downstream of Rho-mDia in migrating fibroblasts. PLoS One 2014; 9:e91568; PMID:24658398; https://doi.org/10.1371/journal.pone.0091568
  • Mian I, Pierre-Louis WS, Dole N, Gilberti RM, Dodge-Kafka K, Tirnauer JS. LKB1 destabilizes microtubules in myoblasts and contributes to myoblast differentiation. PLoS One 2012; 7:e31583; PMID:22348111; https://doi.org/10.1371/journal.pone.0031583
  • Gundersen GG, Khawaja S, Bulinski JC. Generation of a stable, posttranslationally modified microtubule array is an early event in myogenic differentiation. J Cell Biol 1989; 109:2275-88; PMID:2681230; https://doi.org/10.1083/jcb.109.5.2275
  • Konishi Y, Setou M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 2009; 12:559-67; PMID:19377471; https://doi.org/10.1038/nn.2314
  • Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 2006; 16:2166-72; PMID:17084703; https://doi.org/10.1016/j.cub.2006.09.014
  • Bulinski JC. Microtubule modification: acetylation speeds anterograde traffic flow. Curr Biol 2007; 17:R18-20; PMID:17208171; https://doi.org/10.1016/j.cub.2006.11.036
  • Cai D, McEwen DP, Martens JR, Meyhofer E, Verhey KJ. Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLOS Biol 2009; 7:e1000216; PMID:19823565; https://doi.org/10.1371/journal.pbio.1000216
  • Kreitzer G, Liao G, Gundersen GG. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell 1999; 10:1105-18; PMID:10198060; https://doi.org/10.1091/mbc.10.4.1105