1,196
Views
6
CrossRef citations to date
0
Altmetric
Article Addendum

Multifaceted defense and counter-defense in co-evolutionary arms race between plants and viruses

ORCID Icon & ORCID Icon
Article: e1341025 | Received 24 May 2017, Accepted 07 Jun 2017, Published online: 06 Sep 2017

References

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell 2006; 124:803-14; PMID:16497589; https://doi.org/10.1016/j.cell.2006.02.008
  • Mandadi KK, Scholthof KB. Plant immune responses against viruses: How does a virus cause disease? Plant Cell 2013; 25:1489-505; PMID:23709626; https://doi.org/10.1105/tpc.113.111658
  • Jones JD, Dangl JL. The plant immune system. Nature 2006; 444:323-9; PMID:17108957; https://doi.org/10.1038/nature05286
  • Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 2010; 11:539-48; PMID:20585331; https://doi.org/10.1038/nrg2812
  • Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the plant immune system from dissection to deployment. Science 2013; 341:746-51; PMID:23950531; https://doi.org/10.1126/science.1236011
  • Nicaise V. Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 2014; 5:1-18; https://doi.org/10.3389/fpls.2014.00660
  • Ding SW. RNA-based antiviral immunity. Nat Rev Immunol 2010; 10:632-644; PMID:20706278; https://doi.org/10.1038/nri2824
  • Wang A, Krishnaswamy S. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol Plant Pathol 2012; 13:795-803; PMID:22379950; https://doi.org/10.1111/j.1364-3703.2012.00791.x
  • Wang A. Dissecting the molecular network of virus-plant interactions: The complex roles of host factors. Annu Rev Phytopathol 2015; 53:45-66; PMID:25938276; https://doi.org/10.1146/annurev-phyto-080614-120001
  • Baulcombe D. RNA silencing in plants. Nature 2004; 431:356-63; PMID:15372043; https://doi.org/10.1038/nature02874
  • Cheng X, Wang A. The potyviral silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J Virol 2017; 91:e01478-16; PMID:27795417; https://doi.org/10.1128/JVI.01478-16
  • Zhao JH, Hua CL, Fang YY. Guo HS The dual edge of RNA silencing suppressors in the virus-host interactions. Curr Opin Virol 2016; 17:39-44; PMID:26802204; https://doi.org/10.1016/j.coviro.2015.12.002
  • Schauer SE, Jacobsen SE, Meinke DW, Ray A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 2002; 7:487-91; PMID:12417148; https://doi.org/10.1016/S1360-1385(02)02355-5
  • Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004; 303:672-6; PMID:14704433; https://doi.org/10.1126/science.1093686
  • Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404:293-6; PMID:10749213; https://doi.org/10.1038/35005107
  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 2010; 328:872-5; PMID:20413459; https://doi.org/10.1126/science.1187959
  • Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell 2010; 22:481-96; PMID:20190077; https://doi.org/10.1105/tpc.109.073056
  • Wu Q, Wang X, Ding SW. Viral suppressors of RNA-based viral immunity: host targets. Cell Host Microbe 2010; 8:12-5; PMID:20638637; https://doi.org/10.1016/j.chom.2010.06.009
  • Csorba T, Burgyán J. Antiviral silencing and suppression of gene silencing in plants, p. 1–33. In Wang A, Zhou X (ed), Curr Res Top Plant Virol. Springer International Publishing, Cham; 2016.
  • Hemmes H, Lakatos L, Goldbach R, Burgyan J, Prins M. The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA 2007; 13:1079-89; PMID:17513697; https://doi.org/10.1261/rna.444007
  • Havelda Z, Hornyik C, Valoczi A, Burgyan J. Defective interfering RNA hinders the activity of a tombusvirus‐encoded posttranscriptional gene silencing suppressor. J Virol 2005; 79:450-7; PMID:15596838; https://doi.org/10.1128/JVI.79.1.450-457.2005
  • Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, Dolja VV, Calvino LF, Lopez-Moya JJ, Burgyan J. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 2006; 25:2768-80; PMID:16724105; https://doi.org/10.1038/sj.emboj.7601164
  • Chiu MH, Chen IH, Baulcombe DC, Tsai CH. The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol Plant Pathol 2010; 11:641-9; PMID:20696002
  • Hendelman A, Kravchik M, Stav P, Zik M, Lugassi N, Arazi T. The developmental outcomes of P0-mediated ARGONAUTE destabilization in tomato. Planta 2013; 237:363-77; PMID:23080016; https://doi.org/10.1007/s00425-012-1778-8
  • Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Microbiol 2013; 11:745-760; https://doi.org/10.1038/nrmicro3120
  • Zhai JX, Jeong DH, De Paoli E, Park S, Rosen BD, Li YP, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 2011; 25:2540-53; PMID:22156213; https://doi.org/10.1101/gad.177527.111
  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 2012; 109:1790-5; PMID:22307647; https://doi.org/10.1073/pnas.1118282109
  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 2012; 24:859-74; PMID:22408077; https://doi.org/10.1105/tpc.111.095380
  • Kallman T, Chen J, Gyllenstrand N, Lagercrantz U. A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species. Plant Physiol 2013; 162:741-54; PMID:23580593; https://doi.org/10.1104/pp.113.214643
  • Yi H, Richards EJ. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 2007; 19:2929-39; PMID:17890374; https://doi.org/10.1105/tpc.107.051821
  • Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 2007; 5:e68; PMID:17298188; https://doi.org/10.1371/journal.pbio.0050068
  • Li HW, Lucy AP, Guo HS, Li WX, Ji LH, Wong SM, Ding SW. Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J 1999; 18:2683-91; PMID:10329615; https://doi.org/10.1093/emboj/18.10.2683
  • Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009; 324:742-3; PMID:19423812; https://doi.org/10.1126/science.1171647
  • Kørner CJ, Klauser D, Niehl A, Dom ınguez-Ferreras A, Chinchilla D, Boller T, Heinlein M, Hann DR. The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant Microbe Interact 2013; 26:1271-80; PMID:23902263; https://doi.org/10.1094/MPMI-06-13-0179-R
  • Chen H, Arsovski AA, Yu K, Wang A. Deep sequencing leads to the identification of eukaryotic translation initiation factor 5A as a key element in Rsv1-mediated lethal systemic hypersensitive response to Soybean mosaic virus infection in soybean. Mol Plant Pathol 2017; 18:391-404; PMID:27019403; https://doi.org/10.1111/mpp.12407
  • Nicaise V, Candresse T. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity. Mol Plant Pathol 2016; PMID:27301551; https://doi.org/10.1111/mpp.12447
  • Gouveia BC, Calil IP, Machado JP, Santos AA, Fontes EP. Immune receptors and co-receptors in antiviral innate immunity in plants. Front Microbiol 2017; 7:2139; PMID:28105028; https://doi.org/10.3389/fmicb.2016.02139
  • Niehl A, Wyrsch I, Boller T, Heinlein M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol 2016; 211:1008-19; PMID:27030513; https://doi.org/10.1111/nph.13944
  • Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 2013; 64:839-63; PMID:23373699; https://doi.org/10.1146/annurev-arplant-042811-105606
  • Withers J, Dong X. Posttranslational modifications of NPR1: a single protein playing multiple roles in plant immunity and physiology. PLoS Pathog 2016; 12:e1005707; PMID:27513560; https://doi.org/10.1371/journal.ppat.1005707
  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 2012; 486:228-32; PMID:22699612
  • Saleh A, Withers J, Mohan R, Marques J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, Dong X. Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host Microbe 2015; 18:169-82; PMID:26269953; https://doi.org/10.1016/j.chom.2015.07.005
  • van den Burg HA, Kini RK, Schuurink RC, Takken FLW. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 2010; 22:1998-2016; PMID:20525853; https://doi.org/10.1105/tpc.109.070961
  • Cheng X, Xiong R, Li Y, Li F, Zhou X, Wang A. Sumoylation of Turnip mosaic virus RNA polymerase promotes viral infection by counteracting the host NPR1-mediated immune response. Plant Cell 2017; 29(3):508-25; PMID:28223439; https://doi.org/10.1105/tpc.16.00774
  • Fellers JP, Tremblay D, Handest MF, Lommel SA. The Potato virus Y M(S)N(R) NIb-replicase is the elicitor of a veinal necrosis-hypersensitive response in root knot nematode resistant tobacco. Mol Plant Pathol 2002; 3:145-52; PMID:20569320; https://doi.org/10.1046/j.1364-3703.2002.00106.x
  • Kim SB, Lee HY, Seo S, Lee JH, Choi D. RNA-dependent RNA polymerase (NIb) of the potyviruses is an avirulence factor for the broad-spectrum resistance gene Pvr4 in Capsicum annuum cv. CM334. PLoS One 2015; 10(3):e0119639; PMID:25760376; https://doi.org/10.1371/journal.pone.0119639
  • Zhang L, Chen H, Brandizzi F, Verchot J, Wang A. The UPR branch IRE1-bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLoS Genet 2015; 11:e1005164; PMID:25875739; https://doi.org/10.1371/journal.pgen.1005164