2,773
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

Somatic multicellularity as a satisficing solution to the prediction-error minimization problem

Pages 119-132 | Received 24 May 2019, Accepted 07 Jul 2019, Published online: 28 Jul 2019

References

  • Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I. The origin of Metazoa: A unicellular perspective. Nat Rev Genet. 2017;18:498–512.
  • Hug LA, Baker BJ, Anantharaman K, et al. A new view of the tree of life. Nature Microbiol. 2016;1:16048.
  • Muñoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, et al. Moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:781.
  • West SA, Cooper GA. Division of labour in microorganisms: an evolutionary perspective. Nat Rev Microbiol. 2016;14:716–723.
  • Widder S, Allen RJ, Pfeiffer T, et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. Isme J. 2016;10:2557–2568.
  • Szathmáry E. Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci USA. 2015;112:10104–10111.
  • Queller DC, Strassmann JE. Beyond society: the evolution of organismality. Philos Trans R Soc Lond B Biol Sci. 2009;364(1533):3143–3155.
  • Strassmann JE, Queller DC. The social organism: congresses, parties and committees. Evolution. 2010;64:605–616.
  • Friston KJ. The free-energy principle: A unified brain theory? Nat Rev Neurosci. 2010;11:127–138.
  • Friston KJ. Life as we know it. J R Soc Interface. 2013;10:20130475.
  • Knoll AH. The multiple origins of complex multicellularity. Annu Rev Earth Planetary Sci. 2011;39:217–239.
  • Brunet T, King N. The origin of animal multicellularity and cell differentiation. Devel Cell. 2017;43:124–140.
  • Haeckel E. Memoirs: the Gastraea-Theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellæ. J Cell Sci. 1874;2:142–165.
  • Carr M, Leadbeater BSC, Hassan R, et al. Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci USA. 2008;105:16641–16646.
  • James-Clark H. Note on the Infusoria flagellata and the Spongiae ciliatae. Am J Sci. 1866;1:113–114.
  • Fairclough SR. Choanoflagellates: perspective on the origin of animal multicellularity. Ruiz-Trillo I, Nedelcu AM editors. Evolutionary Transitions to Multicellular Life. Springer: Dordrecht. 2015. 99–116. DOI:10.1007/978-94-017-9642-2_5
  • Funayama N. The stem cell system in demosponges: insights into the origin of somatic stem cells. Devel Growth Diff. 2010;52:1–14.
  • Funayama N. The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Devel Genes Evol. 2013;223:23–38.
  • Maynard Smith J, Szathmáry E. The Major Transitions in Evolution. Oxford, UK: W. H. Freeman; 1995.
  • Aktipis CA, Boddy AM, Jansen G, et al. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos Trans Royal Soc B. 2015;370:20140219.
  • Diaz-Muñoz SL, Boddy AM, Dantas G, et al. Contextual organismality: beyond pattern to process in the emergence of organisms. Evolution. 2016;70:2669–2677.
  • West SA, Fisher RM, Gardner A, et al. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112–10119.
  • Solana J. Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. EvoDevo. 2013;4:2.
  • Fields C, Levin M. Are planaria individuals? What regenerative biology is telling us about the nature of multicellularity. Evol Biol. 2018;5:237–247.
  • Chernet B, Levin M. Endogenous voltage potentials and the microenvironment: bioelectric signals that reveal, induce and normalize cancer. J Clin Exp Oncol. 2013;1:S1–002. DOI:10.4172/2324-9110.S1-002
  • Oviedo NJ, Beane WS. Regeneration: the origin of cancer or a possible cure? Seminars Cell Devel Biol. 2009;20:557–564.
  • Moore D, Walker SI, And Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. Conver Sci Phys Oncol. 2017;3:043001.
  • Rubin H. Cancer as a dynamic developmental disorder. Cancer Res. 1985;45:2935–2942.
  • Hanschen ER, Shelton DE, Michod RE. Evolutionary transitions in individuality and recent models of multicellularity. Ruiz-Trillo I, Nedelcu AM editors. Evolutionary Transitions to Multicellular Life. Springer: Dordrecht. 2015. 165–188. DOI:10.1007/978-94-017-9642-2_9
  • Feynman RP, Leighton RB, Sands M. 1964. The Feynman Lectures on Physics. Reading, MA: Addison-Wesley. Available at: http://www.feynmanlectures.caltech.edu/)
  • Friston K, Levin M, Sengupta B, et al. Knowing one’s place: A free-energy approach to pattern regulation. J R Soc Interface. 2015;12:20141383.
  • Edelman G. Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron. 1993;10:115–125. PMID: 8094962
  • Krause J, Ruxton GD, Krause S. Swarm intelligence in animals and humans. Trends Ecol Evol. 2010;25:28–34.
  • Maturana HR, Varela FJ. Autopoiesis and Cognition: the Realization of the Living. Dordrecht: Reidel; 1991.
  • Rosen R. On information and complexity. In: Casti JL, Karlqvist A, editors. Complexity, Language, and Life: mathematical Approaches. Berlin: Springer-Verlag; 1986. p. 174–196.
  • Friston K, FitzGerald T, Rigoli F, et al. Active inference and learning. Neurosci Biobehav Rev. 2016;68:862–879.
  • Morris HR, Masento MS, Taylor GW, et al. Structure elucidation of two differentiation inducing factors (DIF-2 and DIF-3) from the cellular slime mould Dictyostelium discoideum. Biochem J. 1988;249:903–906.
  • Morris HR, Taylor GW, Masento MS, et al. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature. 1987;328:811–814.
  • Conant RC, Ashby WR. Every good regulator of a system must be a model of that system. Int J Syst Sci. 1970;1(2):89–97.
  • Boraas ME, Seale DB, Boxhorn JE. Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity. Evol Ecol. 1998;12:153–164.
  • Forterre P. The universal tree of life: an update. Front Microbiol. 2015;6:717.
  • Dagan T, Martin W. The tree of one percent. Genome Biol. 2006;7(10):118.
  • Koonin EV. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000 Research. 2016;2016:5.
  • Robbins RJ, Krishtalka L, Wooley JC. Advances in biodiversity: metagenomics and the unveiling of biological dark matter. Stand Genom Sci. 2016;11(1):69.
  • DeBernardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabol. 2008;7:11–20.
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–1033.
  • Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Francisco, CA: Morgan Kaufmann; 1988.
  • Moore C, Newman MEJ. Epidemics and percolation in small-world networks. Phys Rev E. 2000;61:5678–5682.
  • Meyers L. Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull Am Math Soc. 2007;44:63–86.
  • Reynolds AM, Sword GA, Simpson SJ, et al. Predator percolation, insect outbreaks, and phase polyphenism. Curr Biol. 2009;19:204.
  • Aon MA, Cortassa S, O’Rourke B. Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci USA. 2004;101:4447–4452.
  • Larkin JW, Zhai X, Kikuchi K, et al. Signal percolation within a bacterial community. Cell Syst. 2018;7:1–9.
  • Agrawal H. Extreme self-organization in networks constructed from gene expression data. Phys Rev Lett. 2001;89:268702.
  • Barabási A-L, Albert R. Emergence of scaling in random networks. Science. 1999;286:509–512.
  • Bassett DS, Bullmore E. Small world brain networks. Neuroscientist. 2006;12:512–523.
  • Watts DJ, Strogatz SH. Collective dynamics of `small-world’ networks. Nature. 1998;393:440–442.
  • Takahashi-Yanaga F, Sasaguri T. Drug development targeting the Glycogen Synthase Kinase-3β (GSK-3β)-mediated signal transduction pathway: inhibitors of the Wnt/β-Catenin signaling pathway as novel anticancer drugs. J Pharmacol Sci. 2009;109:179–183.
  • Holstein TW. The evolution of the Wnt pathway. Cold Spring Harbor Perspect Biol. 2012;4:a007922.
  • Harwood AJ. Dictyostelium Development: A Prototypic Wnt Pathway? In: Vincan E, editor. Wnt signaling. methods in molecular biology. Vol. 469. Totowa, NJ: Humana Press; 2008. p. 21–32.
  • Dickinson DJ, Nelson WJ, Weis WI. A polarized epithelium organized by β- and α-Catenin predates Cadherin and metazoan origins. Science. 2011;331:1336–1339.
  • Loomis WF. Cell signaling during development of Dictyostelium. Devel Biol. 2014;391:1–16.
  • Tweedt SM, Erwin DH. Origin of metazoan developmental toolkits and their expression in the fossil record. Ruiz-Trillo I, Nedelcu AM editors. Evolutionary transitions to multicellular life. Springer: Dordrecht. 2015. 47–78. DOI:10.1007/978-94-017-9642-2_3
  • Segawa Y, Suga H, Iwabe N, et al. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc Natl Acad Sci USA. 2006;103:12021–12026.
  • Boureux A, Vignal E, Faure S, et al. Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol Biol Evol. 2017;24:203–216.
  • Young SL, Diolaiti D, Conacci-Sorrell M, et al. Premetazoan ancestry of the Myc–max network. Mol Biol Evol. 2011;28:2961–2971.
  • Lenard J. Mammalian hormones in microbial cells. Trends Biochem Sci. 1992;17:147–150.
  • Csaba G. The hormonal system of the unicellular Tetrahymena: A review with evolutionary aspects. Acta Microbiol Immunol Hungarica. 2012;59:131–156.
  • Roshchina VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. Lyte M editor. Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer: Cham. 2016. 25–77. DOI:10.1007/978-3-319-20215-0_2
  • Plattner H, Verkhratsky A. The remembrance of the things past: conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium. 2018;73:25–39.
  • Larroux C, Luke GN, Koopman P, et al. Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol. 2008;25:980–996.
  • Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci. 2013;36:181–204.
  • Spratling MW. Predictive coding as a model of cognition. Cogn Proc. 2016;17:279–305.
  • Pattee HH. Cell psychology. Cogn Brain Theory. 1982;5:325–341.
  • Di Primio F, Müller BF, Lengeler JW. Minimal cognition in unicellular organisms. In: Meyer JA, Berthoz A, Floreano D, et al., editors. From Animals to Animats. Honolulu, HI: International Society for Adaptive Behavior; 2000. p. 3–12.
  • Baluška F, Levin M. On having no head: cognition throughout biological systems. Front Psych. 2016;7:902.
  • Lyon P. The biogenic approach to cognition. Cogn Proc. 2006;7:11–29. . PMID: 16628463
  • Ratcliff WC, Fankhauser JD, Rogers DW, et al. Origins of multicellular evolvability in snowflake yeast. Nat Comms. 2015;6:6102.
  • Ryall JG, Cliff T, Dalton S, et al. Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell. 2015;17:651–662.
  • Wu J, Ocampo A, Izpisua Belmonte JC. Cellular metabolism and induced pluripotency. Cell. 2016;166:1371–1385.
  • Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–669.
  • Gatenby RA, Brown J. Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer. BBA Rev Cancer. 2017;1867:162–166.
  • Henry CJ, Casás-Selves M, Kim J, et al. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J Clin Invest. 2015;125:4666–4680.
  • Carey A, Edwards DK 5th, Eide CA, et al. Identification of Interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid Leukemia. Cell Rep. 2017;18:3204–3218.
  • Nickel M. Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless Porifera? Invert Biol. 2010;129:1–16.
  • Holland LZ, Carvalho JE, Laudet V, et al. Evolution of bilaterian central nervous systems: A single origin? EvoDevo. 2013;4:27.
  • Moroz LL, Kohn AB. Cellular metabolism and induced pluripotency. Philos Trans Royal Soc B. 2016;166:1371–1385.
  • Kumar A, Brockes JP. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 2012;11:691–699.
  • Herrera-Rincon C, Pai VP, Moran KM, et al. The brain is required for normal muscle and nerve patterning during early Xenopus development. Nat Comms. 2017;8:587.
  • Boilly B, Faulkner S, Jobling P, et al. Nerve dependence: from regeneration to cancer. Cancer Cell. 2017;31:342–354.
  • Kuol N, Stojanovska L, Apostolopoulos V, et al. Role of the nervous system in cancer metastasis. J Expt Clin Cancer Res. 2018;37:5.
  • Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Devel Biol. 1977;56:110–156.
  • Clark A. How to knit your own Markov blanket. In: Metzinger TK, Wiese W, editors. Philosophy and predictive processing. Frankfurt: MIND Group; 2017. Ch. 6.
  • Maturana HR, Varela F. Autopoiesis: the organization of the living. In: Maturana HR, Varela F, editors. Autopoiesis and Cognition. Dordrecht: Reidel; 1980. p. 73–134.