1,143
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Presence and absence of light-independent chlorophyll biosynthesis among Chlamydomonas green algae in an ice-covered Antarctic lake

ORCID Icon, , &
Pages 148-150 | Received 02 Jul 2019, Accepted 13 Sep 2019, Published online: 13 Oct 2019

References

  • Neale PJ, Priscu JC. The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: acclimation to an extreme shade environment. Plant Cell Physiol. 1995;36:253–263.
  • Bielewicz S, Bell E, Kong W, et al. Protist diversity in a permanently ice-covered Antarctic lake during the polar night transition. ISME J. 2011;5:1559.
  • Kong W, Li W, Romancova I, et al. An integrated study of photochemical function and expression of a key photochemical gene (psbA) in photosynthetic communities of Lake Bonney (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol. 2014;89:293–302.
  • Dolhi JM, Teufel AG, Kong W, et al. Diversity and spatial distribution of autotrophic communities within and between ice‐covered Antarctic lakes (McMurdo Dry Valleys). Limnol Oceanogr. 2015;60:977–991. .
  • Li W, Podar M, Morgan-Kiss RM. Ultrastructural and single-cell-level characterization reveals metabolic versatility in a microbial eukaryote community from an ice-covered Antarctic lake. Appl Environ Microbiol. 2016;82:3659–3670.
  • Possmayer M, Gupta RK, Szyszka‐Mroz B, et al. Resolving the phylogenetic relationship between Chlamydomonas sp. UWO 241 and Chlamydomonas raudensis SAG 49.72 (Chlorophyceae) with nuclear and plastid DNA sequences. J Phycol. 2016;52:305–310.
  • Cvetkovska M, Hüner NP, Smith DR. Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biol. 2017;40:1169–1184.
  • Raymond J, Morgan-Kiss RM. Multiple ice-binding proteins of probably prokaryotic origin in an Antarctic lake alga, Chlamydomonas sp. ICE-MDV (Chlorophyceae). J Phycol. 2017;53:848–854.
  • Cvetkovska M, Orgnero S, Hüner NP, et al. The enigmatic loss of light-independent chlorophyll biosynthesis from an Antarctic green alga in a light-limited environment. New Phytol. 2019;222:651–656.
  • Armstrong GA. Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B. 1998;43:87–100.
  • Reinbothe C, El Bakkouri M, Buhr F, et al. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci. 2010;15:614–624.
  • Hunsperger HM, Randhawa T, Cattolico RA. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol. 2015;15:16.
  • Griffiths WT, McHugh T, Blankenship RE. The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. FEBS Lett. 1996;398:235–238.
  • Hanf R, Fey S, Schmitt M, et al. Catalytic efficiency of a photoenzyme—an adaptation to natural light conditions. ChemPhysChem. 2012;13:2013–2015.
  • Fujita Y, Bauer CE. Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits in vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem. 2000;275:23583–23588.
  • Morgan-Kiss RM, Priscu JC, Pocock T, et al. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev. 2006;70:222–252.
  • Yamazaki S, Nomata J, Fujita Y. Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Phys. 2006;142:911–922.
  • Yamamoto H, Kurumiya S, Ohashi R, et al. Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol. 2009;50:1663–1673.
  • Suzuki JY, Bauer CE. A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci USA. 1995;92:3749–3753.
  • Reinbothe S, Reinbothe C, Apel K, et al. Evolution of chlorophyll biosynthesis—the challenge to survive photooxidation. Cell. 1996;86:703–705.
  • Zhang Z, An M, Miao J, et al. The Antarctic sea ice alga Chlamydomonas sp. ICE-L provides insights into adaptive patterns of chloroplast evolution. BMC Plant Biol. 2018;18:53.
  • An M, Mou S, Zhang X, et al. Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol. 2013;134:151–157.
  • Cook G, Teufel A, Kalra I, et al. The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. Photosynth Res. 2019;141:209–228.