2,938
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Does regeneration recapitulate phylogeny? Planaria as a model of body-axis specification in ancestral eumetazoa

Pages 27-38 | Received 19 Dec 2019, Accepted 09 Feb 2020, Published online: 18 Feb 2020

References

  • Nielsen C. Six major steps in animal evolution: are we derived sponge larvae?. Evol Devel. 2008;10:241–257.
  • Funayama N. The stem cell system in demosponges: insights into the origin of somatic stem cells. Devel Growth Diff. 2010;52:1–14.
  • Arendt D , Benito-Gutierrez E , Brunet T , et al. Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Philos Trans Royal Soc B. 2015;370:20150286.
  • Jauffred L , Vejborg RM , Korolev KS , et al. Chirality in microbial biofilms is mediated by close interactions between the cell surface and the substratum. Isme J. 2017;11:1688–1701.
  • Miller DJ , Ball EE . Animal evolution: the enigmatic phylum Placozoa revisited. Curr Biol. 2005;15:R26–R28.
  • Ereskovsky AV , Renard E , Borchiellini C . Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution. Devel Genes Evol. 2013;223:5–22.
  • Martindale MQ . The onset of regenerative properties in ctenophores. Curr Opin Genet Devel. 2016;40:113–119.
  • Slack JMW . Animal regeneration: ancestral character or evolutionary novelty? EMBO Rep. 2017;18:1497–1508.
  • Lai AG , Aboobaker AA . EvoRegen in animals: time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev Biol. 2018;433:118–131.
  • Tiozzo S , Copley RR . Reconsidering regeneration in metazoans: an evo-devo approach. Front Ecol Evol. 2015;3:67.
  • Elliott SA , Sánchez Alvarado A . The history and enduring contributions of planarians to the study of animal regeneration. WIRES Devel Biol. 2012;2:301–326.
  • Rink JC . Stem cells, patterning and regeneration in planarians: self-organization at the organismal scale. In: Rink JC , editor. Planarian regeneration: methods and protocols (Methods in Molecular Biology). Vol. 1774. New York (NY): Springer; 2018. p. 57–172.
  • Adamska M . Developmental signalling and emergence of animal multicellularity. In: Ruiz-Trillo I , Nedelcu AM , editors. Evolutionary transitions to multicellular life. Dordrecht: Springer; 2015. p. 425–450. DOI:10.1007/978-94-017-9642-2_20
  • Niehrs C . On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development. 2010;137:845–857.
  • Sebé-Pedrós A , Degnan BM , Ruiz-Trillo I . The origin of Metazoa: a unicellular perspective. Nat Rev Genet. 2017;18:498–512.
  • Tweedt SM , Erwin DH . Origin of metazoan developmental toolkits and their expression in the fossil record. In: Ruiz-Trillo I , Nedelcu AM , editors. Evolutionary transitions to multicellular life. Dordrecht: Springer; 2015. p. 47–78. DOI:10.1007/978-94-017-9642-2_3
  • Loh KM , van Amerongen R , Nusse R . Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Devel Cell. 2016;38:643–655.
  • Martindale MQ , Hejnol A . A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Devel Cell. 2009;17:162–174.
  • Petersen CP , Reddien PW . Wnt signaling and the polarity of the primary body axis. Cell. 2009;139:1056–1068.
  • Genikhovich G , Fried P , Prünster MM , et al. Axis patterning by BMPs: cnidarian network reveals evolutionary constraints. Cell Rep. 2015;10:1646–1654.
  • He S , Del Viso F , Chen C-Y , et al. An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science. 2018;361:1377–1380.
  • Layden MJ , Rentzsch F , Röttinger E . The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WIRES Devel Biol. 2016;5:408–428.
  • Wijesena N , Simmons DK , Martindale MQ . Antagonistic BMP–cWNT signaling in the cnidarian Nematostella vectensis reveals insight into the evolution of mesoderm. Proc Natl Acad Sci USA. 2017;114:E5608–E5615.
  • Neville AC . Animal asymmetry. London: Edward Arnold; 1976.
  • Palmer AR . Animal asymmetry. Curr Biol. 2009;19:R473–R477.
  • Gavilán B , Perea-Atienza E , Martínez P . Xenacoelomorpha: a case of independent nervous system centralization? Philos Trans Royal Soc B. 2016;371:20150039.
  • Hejnol A , Rentzsch F . Neural nets. Curr Biol. 2015;25:R775–R792.
  • Martínez P , Perea-Atienza E , Gavilán B , et al. The study of xenacoelomorph nervous systems: molecular and morphological perspectives. Invert Zool. 2017;14:32–44.
  • Gruhl A , Okamura B . Development and myogenesis of the vermiform Buddenbrockia (Myxozoa) and implications for cnidarian body plan evolution. EvoDevo. 2012;3:10.
  • Jiménez-Guri E , Philippe H , Okamura B , et al. Buddenbrockia is a cnidarian worm. Science. 2007;317:116–118.
  • Oviedo NJ , Morokuma J , Walentek P , et al. Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev Biol. 2010;339:188–199.
  • Iglesias M , Gomez-Skarmeta JL , Saló E , et al. Silencing of Smed-βcatenin1 generates radial-like hypercephalized planarians. Development. 2008;135:1215–1221.
  • Erwin DH . Early metazoan life: divergence, environment and ecology. Philos Trans Royal Soc B. 2015;370:20150036.
  • Jondelius U , Ruiz-Trillo I , Baguñà J , et al. The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool Scripta. 2002;31:201–215.
  • Giribet G . Assembling the lophotrochozoan (=spiralian) tree of life. Philos Trans Royal Soc B. 2008;363:1513–1522.
  • Hejnol A , Obst M , Stamatakis A , et al. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B. 2009;276:4261–4270.
  • Dunn CW , Giribet G , Edgecombe GD , et al. Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst. 2014;45:371–395.
  • Cannon JT , Vellutini BC , Smith J III , et al. Xenacoelomorpha is the sister group to Nephrozoa. Nature. 2016;530:89–93.
  • Egger B , Steinke D , Tarui H , et al. To be or not to be a flatworm: the Acoel controversy. PLoS ONE. 2009;4(5):e5502.
  • Bouriat SJ , Hejnol A . Acoels. Curr Biol. 2009;19:R279–R280.
  • De Mulder K , Kuales G , Willems M , et al. Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Devel Biol. 2009;9:69.
  • Perea-Atienza E , Botta M , Salvenmoser W , et al. Posterior regeneration in Isodiametra pulchra (Acoela, Acoelomorpha). Front Zool. 2013;10:64.
  • Gehrke AR , Neverett E , Luo Y-J , et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science. 2019;363:eaau6173.
  • Raz AA , Srivastava M , Salvamoser R , et al. Acoel regeneration mechanisms indicate an ancient role for muscle in regenerative patterning. Nat Comms. 2017;8:1260.
  • Srivastava M , Mazza-Curll KL , van Wolfswinkel JC , et al. Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol. 2014;24:1107–1113.
  • Adell T , Martín-Durán JM , Saló E , et al. Platyhelminthes. In: Wanninger A , editor. Evolutionary developmental biology of invertebrates 2: lophotrochozoa (Spiralia). Wein: Springer; 2015. p. 21–40. DOI:10.1007/978-3-7091-1871-9_3
  • Hejnol A . Acoelomorpha and Xenoturbellida. In: Wanninger A , editor. Evolutionary developmental biology of invertebrates 1: introduction, non-bilateria, acoelomorpha, xenoturbellida, chaetognatha. Wein: Springer; 2015. p. 203–214. DOI:10.1007/978-3-7091-1862-7_9
  • Petralia RS , Mattson MP , Yao PJ . Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev. 2014;16:66–82.
  • Sköld HN , Obst M , Sköld M , et al. Stem cells in asexual reproduction of marine invertebrates. In: Rinkevich B , Matranga V , editors. Stem cells in marine organisms. Berlin: Springer; 2009. p. 105–137. DOI:10.1007/978-90-481-2767-2_5
  • Lively CM . A review of Red Queen models for the persistence of obligate sexual reproduction. J Hered. 2010;101:S13–S20.
  • Maldonado M , Riesgo A . Reproduction in the phylum Porifera: a synoptic overview. Treb Soc Catalana Biol. 2008;59:29–49.
  • Watanabe H , Hoang VT , Mättner R , et al. Immortality and the base of multicellular life: lessons from cnidarian stem cells. Sem Cell Devel Biol. 2009;20:1114–1125.
  • Solana J . Closing the circle of germline and stem cells: the primordial stem cell hypothesis. EvoDevo. 2013;4:2.
  • Vila-Farré M , Rink JC . The ecology of freshwater planarians. In: Rink JC , editor. Planarian regeneration: methods and protocols. New York (NY): Humana; 2018. p. 173–205. DOI:10.1007/978-1-4939-7802-1_3
  • Hoshi M , Kobayashi K , Arioka S , et al. Switch from asexual to sexual reproduction in the planarian Dugesia ryukyuensis. Integr Comp Biol. 2003;43:242–246.
  • Kobayashi K , Koyanagi R , Matsumoto M , et al. Switching from asexual to sexual reproduction in the planarian Dugesia ryukyuensis: bioassay system and basic description of sexualizing process. Zool Sci. 1999;16:291–298.
  • Fields C , Levin M . Are planaria individuals? What regenerative biology is telling us about the nature of multicellularity. Evol Biol. 2018;45:237–247.
  • Newmark PA , Sánchez Alvarado A . Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet. 2002;3:210–219.
  • Malinowski PT , Cochet-Escartin O , Kaj KJ , et al. Mechanics dictate where and how freshwater planarians fission. Proc Natl Acad Sci USA. 2017;114:10888–10893.
  • Arnold CP , Bentham-Pyle BW , Lange JJ , et al. Wnt and TGFβ coordinate growth and patterning to regulate size-dependent behaviour. Nature. 2019;572:655–659.
  • Lobo D , Beane WS , Levin M . Modeling planarian regeneration: a primer for reverse-engineering the worm. PLoS Comp Biol. 2012;8:ee1002481.
  • Lobo D , Levin M . Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration. PLoS Comp Biol. 2015;11:e1004295.
  • Owlarn S , Bartscherer K . Go ahead, grow a head! A planarian’s guide to anterior regeneration. Regeneration. 2016;3:139–155.
  • Petersen CP , Reddien PW . Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science. 2011;332:852–855.
  • Pietak A , Bischof J , LaPalme J , et al. Neural control of body-plan axis in regenerating planaria. PLoS Comp Biol. 2019;15:e1006904.
  • Durant F , Bischof J , Fields C , et al. The role of early bioelectric signals in the regeneration of planarian anterior/posterior polarity. Biophys J. 2019;116:948–961.
  • Yazawa S , Umesono Y , Hayashi T , et al. Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc Natl Acad Sci USA. 2009;106:22329–22334.
  • Fraguas S , Barberán S , Iglesias M , et al. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development. 2014;141:1835–1847.
  • Iglesias M , Almuedo-Castillo M , Aboobaker AA , et al. Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway. Devel Biol. 2011;358:68–78.
  • Gurley KA , Rink JC , Sánchez Alvarado A . Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science. 2008;319:323–327.
  • Petersen CP , Reddien PW . Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science. 2008;319:327–330.
  • Bischof J , Day ME , Miller KA , et al. Nervous system and tissue polarity dynamically adapt to new morphologies in planaria. Preprint bioRXiv:815688. 2019. DOI:10.1101/815688
  • Durant F , Morokuma J , Fields C , et al. Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophys J. 2017;112:2231–2243.
  • Sikes JM , Bely AE . Making heads from tails: development of a reversed anterior-posterior axis during budding in an acoel. Devel Biol. 2010;338:86–97.
  • Müller WA . Head formation at the basal end and mirror-image pattern duplication in Hydra vulgaris . Int J Devel Biol. 1996;40: 1119–1141. PMID: 9032017.
  • Braun E , Ori H . Electric-induced reversal of morphogenesis in Hydra. Biophys J. 2019;117:1514–1523.
  • Watanable H . Back through time: how cnidarians and basal metazoans shed light on ancient nervous systems. In: Shigeno S , et al., editor. brain evolution by design, diversity and commonality in animals. Tokyo: Springer; 2017. p. 45–75. DOI:10.1007/978-4-431-56469-0_3
  • Sluys R , Riutort M . Planarian diversity and phylogeny. In: Rink JC , editor. Planarian regeneration: methods and protocols (Methods in Molecular Biology). Vol. 1774. New York (NY): Springer; 2018. p. 1–56.
  • Feuda R , Dohrmann M , Pett W , et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr Biol. 2017;37:3864–3870.
  • Simion P , Philippe H , Baurain D , et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol. 2017;27:958–967.
  • Whelan NV , Kocot KM , Moroz TP , et al. Ctenophore relationships and their placement as the sister group to all other animals. Nat Evol Ecol. 2017;1:1737–1746.
  • Hanschen ER , Shelton DE , Michod RE . Evolutionary transitions in individuality and recent models of multicellularity. In: Ruiz-Trillo I , Nedelcu AM , editors. Evolutionary transitions to multicellular life. Dordrecht: Springer; 2015. p. 165–188. DOI:10.1007/978-94-017-9642-2_9
  • Fields C , Levin M . Somatic multicellularity as a satisficing solution to the prediction-error minimization problem. Commun Integr Biol 2019;12:119–132.
  • Morris HR , Masento MS , Taylor GW , et al. Structure elucidation of two differentiation inducing factors (DIF-2 and DIF-3) from the cellular slime mould Dictyostelium discoideum. Biochem J. 1988;249:903–906.
  • Morris HR , Taylor GW , Masento MS , et al. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature. 1987;328:811–814.
  • Fields C , Bischof J , Levin M . Morphological coordination: a common ancestral function unifying neural and non-neural signaling. Physiology. 2020;35:16–30.
  • Moroz LL , Kohn AB . Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B. 2016;371:20150041.
  • Herrera-Rincon C , Levin M . Booting up the organism during development: prebehavioral functions of the vertebrate brain in guiding body morphogenesis. Commun Integr Biol. 2018;11:e1433440.
  • Herrera-Rincon C , Pai VP , Moran KM , et al. The brain is required for normal muscle and nerve patterning during early Xenopus development. Nat Commun. 2017;8:587.
  • Schierwater B , DeSalle R . Placozoa. Curr Biol. 2017;28:R97–R98.
  • Nickel M . Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless Porifera? Invert Biol. 2010;129:1–16.
  • Kumar A , Brockes JP . Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 2012;35:691–699.
  • Boilly B , Faulkner S , Jobling P , et al. Nerve dependence: from regeneration to cancer. Cancer Cell. 2017;31:342–354.
  • Kuol N , Stojanovska L , Apostolopoulos V , et al. Role of the nervous system in cancer metastasis. J Exp Clin Cancer Res. 2018;37:5.
  • Pawlowski A , Weddell G . Induction of tumors in denervated skin. Nature. 1967;213:1234–1236.