1,386
Views
10
CrossRef citations to date
0
Altmetric
Other

Maize defense elicitor, 12-oxo-phytodienoic acid, prolongs aphid salivation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 63-66 | Received 06 Apr 2020, Accepted 27 Apr 2020, Published online: 13 May 2020

References

  • Bing JW , Guthrie WD. Generation mean analysis for resistance in maize to the corn leaf aphid (Homoptera: aphididae). J Econ Entomol. 1991;84:1080–1082.
  • Carena MJ , Glogoza P. Resistance of maize to the corn leaf aphid: A review. Maydica. 2004;49:241–254.
  • Meihls LN , Handrick V , Glauser G , et al. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell. 2013;25:2341–2355.
  • Pointeau S , Jaguenet E , Couty A , et al. Differential performance and behavior of the corn leaf aphid, Rhopalosiphum maidis, on three species of the biomass crop Miscanthus . Ind Crops Prod. 2014;54:135–141.
  • Louis J , Basu S , Varsani S , et al. Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiol. 2015;169:313–324.
  • Varsani S , Grover S , Zhou S , et al. 12-Oxo-phytodienoic acid acts as a regulator of maize defense against corn leaf aphid. Plant Physiol. 2019;179:01472.2018.
  • Thongmeearkom P . Aphid transmission of maize dwarf mosaic virus strains. Phytopathology. 1976;66:332.
  • So Y-S , Ji HC , Brewbaker JL . Resistance to corn leaf aphid (Rhopalosiphum maidis Fitch) in tropical corn (Zea mays L.). Euphytica. 2010;172:373–381.
  • Nalam V , Louis J , Shah J . Plant defense against aphids, the pest extraordinaire. Plant Sci. 2019;279:96–107.
  • Yan Y , Christensen S , Isakeit T , et al. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell. 2012;24:1420–1436.
  • He Y , Borrego EJ , Gorman Z , et al. Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize). Phytochemistry. 2020;174:112334.
  • Tjallingii WF Electrical recording of stylet penetration activities. In: Aphids, their biology, natural enemies and control, Vol. 2B. Amsterdam: Elsevier Science Publishers; 1988. p. 95–108.
  • Walker GP . A beginner’s guide to electronic monitoring of homopteran probing behavior. In: Walker GP , Backus EA , editors. Principles and applications of electronic monitoring and other techniques in the study of homopteran feeding behavior. Lanham, MD: Thomas Say Publications in Entomology, Entomol. Soc. Am; 2000. p. 14–40.
  • Louis J , Singh V , Shah J . Arabidopsis thaliana-Aphid Interaction. Arabidopsis Book. 2012. 10:e0159.
  • Tjallingii WF . Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot. 2006;57:739–745.
  • Hogenhout SA , Bos JIB . Effector proteins that modulate plant-insect interactions. Curr Opin Plant Biol. 2011;14:422–428.
  • Kaloshian I , Walling LL . Hemipteran and dipteran pests: effectors and plant host immune regulators. J Integr Plant Biol. 2016;58:350–361.
  • Will T , van Bel AJE . Physical and chemical interactions between aphids and plants. J Exp Bot. 2006;57:729–737.
  • Garzo E , Soria C , Gómez-Guillamón ML , et al. Feeding behavior of Aphis gossypii on resistant accessions of different melon genotypes (Cucumis melo). Phytoparasitica. 2002;30:129–140.
  • Knoblauch M , van Bel AJE . Sieve tubes in action. Plant Cell. 1998;10:35–50.
  • Knoblauch M , Peters WS , Ehlers K , et al. Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell. 2001;13:1221–1230.
  • Furch ACU , Bel AJE , van Fricker MD , et al. Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion in Vicia faba . Plant Cell. 2009;21:2118–2132.
  • Wang W , Dai H , Zhang Y , et al. Armet is an effector protein mediating aphid–plant interactions. Faseb J. 2015;29:2032–2045.