1,169
Views
11
CrossRef citations to date
0
Altmetric
Short Communication

Giant, highly diverse protists in the abyssal Pacific: vulnerability to impacts from seabed mining and potential for recovery

, &
Pages 189-197 | Received 17 Aug 2020, Accepted 26 Oct 2020, Published online: 25 Nov 2020

References

  • Gooday AJ , Sykes D , Goral T , et al. Micro-CT 3D imaging reveals the internal structure of three abyssal xenophyophore species (Protista, Foraminifera) from the eastern equatorial Pacific Ocean. Sci Rep. 2018; 8(1): 12103.
  • Tendal OS. A monograph of the Xenophyophoria. Galathea Rep. 1972; 12: 7–103, pls 1–17.
  • Pawlowski J , Holzmann M , Fahrni J , et al. small subunit ribosomal DNA suggests that the xenophyophorean Syringammina corbicula is a foraminiferan. J Eukaryot Microbiol. 2003; 50(6): 483–487.
  • Gooday AJ , Durden JM , Holzmann M , et al. Xenophyophores (Rhizaria, Foraminifera), including four new species and two new genera, from the western Clarion-Clipperton Zone (abyssal equatorial Pacific). Eur J Protistol. 2020; 75: 125715.
  • Gooday AJ , Holzmann M , Caulle C , et al. New species of the xenophyophore genus Aschemonella (Rhizaria: Foraminifera) from areas of the abyssal eastern Pacific licensed for polymetallic nodule exploration. Zool J Linn Soc. 2017; 182(3): 479–499.
  • Levin LA , Thomas CL . The ecology of the xenophyophores (Protista) on eastern Pacific seamounts. Deep-Sea Res. 1988; 35(12): 2003–2027.
  • Kaufmann RS , Wakefield WW , Genin A . Distribution of epibenthic megafauna and lebensspuren on two central North Pacific seamounts. Deep-Sea Res. 1989; 36(12): 1863–1896.
  • Simon-Lledó E , Bett BJ , Huvenne VAI , et al. Megafaunal variation in the abyssal landscape of the Clarion-Clipperton Zone. Prog Oceanogr. 2019; 170: 119–133.
  • Gooday AJ , Holzmann M , Caulle C , et al. Giant foraminifera (xenophyophores) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration. Biol Conserv. 2017; 207: 106–116.
  • Tendal OS , Swinbanks DD , Shirayama Y . A new infaunal xenophyophore (Xenophyophorea, Protozoa) with notes on its ecology and possible trace fossil analogues. Oceanolog Acta. 1982; 5: 325–329.
  • Swinbanks DD . Paleodictyon: the traces of infaunal xenophyophores? Science. 1982; 218(4567): 47–49.
  • Rona PA , Seilacher A , de Vargas C , et al. Paleodictyon nodosum: A living fossil on the deep-sea floor. Deep Sea Res II. 2009; 56(19–20): 1700–1712.
  • Simon-Lledo E , Bett BJ , Huvenne VAI , et al. Ecology of a polymetallic nodule occurrence gradient: implications for deep‐sea mining. Limnol Oeanogr. 2019; 64(5): 1883–1894.
  • Hein JR , Mizell K , Koschinsky A , et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev. 2013; 51: 1–14.
  • International Seabed Authority . Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for polymetallic nodules in the Area. Kingston, Jamaica: ISA Legal and Technical Commission document ISBA/16/LTC/7; 2010.
  • Kamenskaya OE . Spiculammina delicata gen. et sp. n., a new xenophyophore from the eastern Pacific (Psamminidae). Invert Zool. 2005; 2(1): 23–27.
  • Kamenskaya OE , Gooday AJ , Tendal OS , et al. Xenophyophores (Protista, Foraminifera) from the Clarion-Clipperton Fracture Zone with description of three new species. Mar Biodiv. 2015; 45(3): 581–593.
  • Kamenskaya OE , Gooday AJ , Tendal OS , et al. Xenophyophores (Rhizaria, Foraminifera) from the Russian license area of the Clarion–Clipperton Zone (eastern equatorial Pacific), with the description of three new species. Mar Biodiv. 2017; 47(2): 299–306.
  • Gooday AJ , Holzmann M , Goineau A, et al. Five new species and two new genera of xenophyophores (Foraminifera: Rhizaria) from part of the abyssal equatorial Pacific licensed for polymetallic nodule exploration. Zool J Linn Soc. 2017; 183(4): 723–748.
  • Gooday AJ , Holzmann M , Goineau A , et al. Xenophyophores (Rhizaria, Foraminifera) from the Eastern Clarion-Clipperton Zone (equatorial Pacific): the genus Psammina . Protist. 2018; 169(6): 926–957.
  • Amon DJ , Ziegler AF , Dahlgren TG , et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci Rep. 2016; 6(1): 30492.
  • Simon-Lledó E , Thompson S , Yool A , et al. Preliminary observations of the abyssal megafauna of Kiribati. Front Mar Sci. 2019; 6: 605.
  • Kamenskaya OE , Melnik VF , Gooday AJ . Giant protists (xenophyophores and komokiaceans) from the Clarion-Clipperton ferromanganese nodule field (Eastern Pacific). Biol Bull Rev. 2013; 3(5): 388–398.
  • Washburn TW , Turner PJ , Durden JM , et al. Ecological risk assessment for deep-sea mining. Ocean Coast Manag. 2019; 176: 24–39.
  • Jones DOB , Kaiser S , Sweetman AK , et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE. 2017; 12(2): e0171750.
  • Simon-Lledo E , Bett BJ , Huvenne VAI , et al. Biological effects 26 years after simulated deep-sea mining. Sci Rep. 2019; 9(1): 8040.
  • Mullineaux LS . Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. Deep-Sea Res. 1987; 34(2): 165–184.
  • Vanreusel A , Hilario A , Ribeiro PA , et al. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep. 2016; 6(1): 26808.
  • Cuvelier D , Ribeiro PA , Ramalho SP , et al. Are seamounts refuge areas for fauna from polymetallic nodule fields? Biogeosciences. 2019; 17(9): 2657–2680.
  • Veillette J , Sarrazin J , Gooday AJ , et al. Ferromanganese nodule fauna in the equatorial north Pacific Ocean: species richness, faunal cover and spatial distribution. Deep-Sea Res I. 2007; 54(11): 1912–1935.
  • Haeckel E . Report on the deep-sea Keratosa collected by H.M.S. Challenger during the Years 1873-1876. Report of the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873-76. 1889; 82: 1–92. pl. 1–8.
  • Tendal OS . Stannophyllum setosum sp. n., a remarkable xenophyophore (Rhizopodea, Protozoa) from the eastern Pacific. Cah Biol Mar. 1980; 21: 383–385.
  • Gooday AJ , Aranda da Silva A , Pawlowski J . Xenophyophores (Rhizaria, Foraminifera) from the Nazaré Canyon (Portuguese margin, NE Atlantic). Deep-Sea Res II. 2011; 58(23–24): 2401–2419.
  • Gooday AJ , Bett BJ , Pratt DN . Direct observation of episodic growth in an abyssal xenophyophore (Protista). Deep-Sea Res I. 1993; 40(11–12): 2131–2143.
  • Tilot V La structure des assemblages mégabenthique d’une province à nodules polymétallique de l’océan Pacifique tropical Est. 1992; These de Doctorat en Sciences de l’Universite de Bretagne Occidentale. 380 pp.
  • Hess S , Kuhnt W , Hill S , et al. Monitoring the recolonization of the Mt. Pinatubo 1991 ash layer by benthic foraminifera. Mar Micropaleontol. 2001; 43(1–2): 119–142.
  • Alve E , Goldstein ST . Propagule transport as a key method of dispersal in benthic foraminifera (Protista). Limnol Oceanogr. 2003; 48(6): 2163–2170.
  • Wedding LM , Friedlander AM , Kittinger JN , et al. From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc Roy Soc B. 2013; 280(1773): 20131684.
  • Levin LA , Gooday AJ . Possible roles for xenophyophores in deep-sea carbon cycling. In: Rowe GT , Pariente V , editors. Deep-sea food chains and the global carbon cycle. Dordrecht: Kluwer Academic Publishers; 1992. p. 93–104.
  • Tendal OS . Xenophyophores (Protozoa, Sarcodina) in the diet of Neopilina galatheae (Mollusca, Monoplacophorea). Gal Rep. 1985; 16: 39–95. pl. 13.
  • Sokolova MN . Feeding and trophic structure of the deep-sea macrobenthos. Washington, D.C: Smithsonian Institution Libraries; 2000. 264 pp.
  • Kamenskaya OE . Xenophyophorea and Komokiacea in trophic chains of deep-water benthos. In: Kuznetsov AP , Sokolova MN , editors. Feeding in marine invertebrates and its significance in formation of communities. Moscow: P.P. Shirshov Institute of Oceanology; 1987. p. 15–22.
  • Levin LA , DeMaster DJ , McCann LD , et al. Effects of giant protozoans (class: Xenophyophorea) on deep-seamount benthos. Mar Ecol Prog Ser. 1986; 29: 99–104.
  • Laureillard J , Méjanelle L , Sibuet M . Use of lipids to study the trophic ecology of deep-sea xenophyophores. Mar Ecol Prog Ser. 2004; 270: 129–140.
  • Sibuet M , Albert P , Charmasson S , et al. The benthic ecosystem in the three EUMELI sites in the northeast tropical Atlantic: general perspectives and initial results on biological abundance and activities. Ann Inst océanogr. 1993; 69: 21–33.
  • Hori S , Tsuchiya M , Nishi S , et al. Active bacterial flora surrounding foraminifera (Xenophyophorea) living on the deep-sea floor. Biosci Biotechnol Biochem. 2013; 77(2): 381–384.
  • Levin LA , Rouse GW . Giant protists (xenophyophores) function as fish nurseries. Ecology. 2020; 101(4). DOI:10.1002/ecy.2933
  • Buhl-Mortensen L , Vanreusel A , Gooday AJ , et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol. 2010; 31: 21–50.
  • Levin LA . Interactions between metazoans and large, agglutinating protozoans: implications for the community structure of deep-sea benthos. Amer Sci. 1991; 31: 886–900.
  • Fujioka K , Watanabe M , Kobayashi K . Deep-sea photographs of the northwestern and central Pacific Ocean: an invitation to deep-sea environment. Bull Ocean Res Inst Univ Tokyo. 1989; 27: 215.