2,824
Views
3
CrossRef citations to date
0
Altmetric
Review

Tool and techniques study to plant microbiome current understanding and future needs: an overview

ORCID Icon & ORCID Icon
Pages 209-225 | Received 21 Apr 2022, Accepted 24 May 2022, Published online: 10 Aug 2022

References

  • Zhai Y, Li X, Wang T, et al. A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors. Environ Int. 2018;113:74–90.
  • Zhou Q, Li K, Jun X, et al. Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour Technol. 2009;100(16):3780–3786.
  • Jacoby R, Peukert M, Succurro A, et al. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci. 2017;8:1617.
  • Pronk LJ, Bakker PA, Keel C, et al. The secret life of plant‐beneficial rhizosphere bacteria: insects as alternative hosts. Environ Microbiol. 2022;24:1–17.
  • Xu J. Invited review: microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Molecul Ecol. 2006;15:1713–1731.
  • Ferone M, Gowen A, Fanning S, et al. Microbial detection and identification methods: bench top assays to omics approaches. Comprehen Rev Food Sci Food Safe. 2020;19(6):3106–3129.
  • Lagier JC, Edouard S, Pagnier I, et al. Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev. 2015;28(1):208–236.
  • Pace NR. A molecular view of microbial diversity and the biosphere. Science. 1997;276(5313):734–740.
  • Compant S, Cambon MC, Vacher C, et al. The plant endosphere world–bacterial life within plants. Environ Microbiol. 2021;23(4):1812–1829.
  • Bodor A, Bounedjoum N, Vincze GE, et al. Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Bio/Technol. 2020;19(1):1–22.
  • Li L, Mendis N, Trigui H, et al. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5:258.
  • Hibbing ME, Fuqua C, Parsek MR, et al. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8(1):15–25.
  • Palková Z. Multicellular microorganisms: laboratory versus nature. EMBO Rep. 2004;5(5):470–476.
  • Rantsiou K, Urso R, Iacumin L, et al. Culture-dependent and-independent methods to investigate the microbial ecology of Italian fermented sausages. Appl Environ Microbiol. 2005;71(4):1977–1986.
  • Su C, Lei L, Duan Y, et al. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol. 2012;93(3):993–1003.
  • Frank DN, Spiegelman GB, Davis W, et al. Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clinical Microbiol. 2003;41(1):295–303.
  • Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clinical Microbiol. 2007;45(9):2761–2764.
  • Rosselló‐Móra R. Towards taxonomy of bacteria and archaea based on interactive and cumulative data repositories. Environ Microbiol. 2012;14(2):318–334.
  • Cao Y, Fanning S, Proos S, et al. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front Microbiol. 2017;8:182.
  • Schoch CL, Seifert KA, Huhndorf S, et al. Fungal barcoding consortium, fungal barcoding consortium author list nuclear ribosomal internal transcribed spacer (its) region as a universal dna barcode marker for fungi. Precede National Acad Sci. 2012;109(16):6241–6246.
  • Gu X, Cheng X, Zhang J, et al. Identification of fungal community in otomycosis by internal transcribed spacer sequencing. Front Microbiol. 2022;13:820423.
  • Clarridge IIIJE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17:840–862.
  • Winand R, Bogaerts B, Hoffman S, et al. Targeting the 16s rRNA gene for bacterial identification in complex mixed samples: comparative evaluation of second (illumina) and third (Oxford nanopore technologies) generation sequencing technologies. Int J Mol Sci. 2019;21(1):298.
  • Jenkins C, Chapman TA, Micallef JL, et al. Molecular techniques for the detection and differentiation of host and parasitoid species and the implications for fruit fly management. Insects. 2012;3(3):763–788.
  • Topalović O, Hussain M, Heuer H. Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Front Microbiol. 2020;11:313.
  • Bez C, Esposito A, Thuy HD, et al. The rice foot rot pathogen dickeya zeae alters the in‐field plant microbiome. Environ Microbiol. 2021;23:7671–7687.
  • Saeed Q, Xiukang W, Haider FU, et al. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int J Molecul Sci. 2021;22(19):10529.
  • Elshaghabee FM, Bockelmann W, Meske D, et al. Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front Microbiol. 2016;7:47.
  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V, et al. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol Bioinform. 2016;12:EBO–S36436.
  • Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Molecul Bio Rev. 2004;68:669–685.
  • Zhang L, Chen F, Zeng Z, et al. Advances in metagenomics and its application in environmental microorganisms. Front Microbiol. 2021;12:766364.
  • Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 2009;19:1141–1152.
  • Rout ME.2014. The plant microbiome. InAdvances in botanical research. Academic Press. Vol. 69. p. 279–309.
  • Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14(6):1–10.
  • Babalola OO, Fadiji AE, Enagbonma BJ, et al. The nexus between plant and plant microbiome: revelation of the networking strategies. Front Microbiol. 2020;11:2128.
  • Mercado-Blanco J, Abrantes I, Barra Caracciolo A, et al. Belowground microbiota and the health of tree crops. Front Microbiol. 2018;9:1006.
  • Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 2013;37(5):634–663.
  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, et al. The role of microbial signals in plant growth and development. Plant Signal Behav. 2009;4(8):701–712.
  • Chandra P, Singh E Applications and mechanisms of plant growth-stimulating rhizobacteria. In Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore. (Ed.), 2016; (pp. 37–62).
  • Mhlongo MI, Piater LA, Madala NE, et al. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018;9:112.
  • Santos LF, Olivares FL. Plant microbiome structure and benefits for sustainable agriculture. Curr Plant Biol. 2021;26:100198.
  • Cirvilleri G, Spina S, Iacona C, et al. Study of rhizosphere and phyllosphere bacterial community and resistance to bacterial canker in genetically engineered phytochrome A cherry plants. J Plant Physiol. 2008;165(10):1107–1119.
  • Bakker PA, Berendsen RL, Doornbos RF, et al. The rhizosphere revisited: root microbiomics. Front Plant Sci. 2013;4:165.
  • Hu J, Wei Z, Kowalchuk GA, et al. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ Microbiol. 2020;22(12):5005–5018.
  • Barea JM, Pozo MJ, Azcon R, et al. Microbial co-operation in the rhizosphere. J Exp Bot. 2005;56(417):1761–1778.
  • Mahmud K, Missaoui A, Lee K, et al. Rhizosphere microbiome manipulation for sustainable crop production. Curr Plant Biol. 2021;27:100210.
  • Chandra P, Enespa. Soil–microbes–plants: interactions and ecological diversity. In Varma, A., Tripathi, S., Prasad, R. (eds). Plant microbe interface. Cham: Springer; 2019. p. 145–176.
  • Enespa CP.2017. Microbial Volatiles as Chemical Weapons Against Pathogenic Fungi. In Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds.). Volatiles and Food Security. Singapore: Springer. p. 227–254.
  • Miranda‐Sánchez F, Rivera J, Vinuesa P. Diversity patterns of rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes. Environ Microbiol. 2016;18(8):2375–2391.
  • Kudoyarova G, Arkhipova T, Korshunova T, et al. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front Plant Sci. 2019;10 (1368):1–11.
  • Starr MP. Bacteria as plant pathogens. Annual Rev Microbiol. 1959;13:211–238.
  • Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69(4):1875–1883.
  • Bringel F, Couée I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol. 2015;6:486.
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506.
  • Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Brazilian J Microbiol. 2016;47:86–98.
  • Gottel NR, Castro HF, Kerley M, et al. Distinct microbial communities within the endosphere and rhizosphere of populus deltoides roots across contrasting soil types. Appl Environ Microbiol. 2011;77(17):5934–5944.
  • Nongkhlaw FM, Joshi SR. Distribution pattern analysis of epiphytic bacteria on ethno medicinal plant surfaces: a micrographical and molecular approach. J Microscopy Ultrastruct. 2014;2(1):34–40.
  • Der Wal A V, Tecon R, Kreft JU, et al. Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PloS one. 2013;8(10):e75633.
  • Carvalho SD, Castillo JA. Influence of light on plant–phyllosphere interaction. Front Plant Sci. 2018;9:1482.
  • Afzal I, Shinwari ZK, Sikandar S, et al. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019;221:36–49.
  • Partida-Martínez LP, Heil M. The microbe-free plant: fact or artifact? Front Plant Sci. 2011;2:100.
  • Vishwakarma K, Kumar N, Shandilya C, et al. Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review. Front Microbiol. 2020;11:560406.
  • Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev. 2017;41(2):109–130.
  • Grilli J. Macroecological laws describe variation and diversity in microbial communities. Nat Commun. 2020;11(1):1.
  • Franco-Duarte R, Černáková L, Kadam S, et al. Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganism. 2019;7(5):130.
  • Ritchie NJ, Schutter ME, Dick RP, et al. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl Environ Microbiol. 2000;66(4):1668–1675.
  • Portillo MC, Villahermosa D, Corzo A. Microbial community fingerprinting by differential display-denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2011;77(1):351–354.
  • Keyser M, Witthuhn RC, Lamprecht C, et al. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst Appl Microbiol. 2006;29(1):77–84.
  • Wertz S, Degrange V, Prosser JI, et al. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol. 2007;9(9):2211–2219.
  • Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009;68(1):1–3.
  • Chen X, Zheng B, Liu H. Optical and digital microscopic imaging techniques and applications in pathology. Anal Cell Pathol. 2011;34(1–2):5–18.
  • Wisse E, Braet F, Duimel H, et al. Fixation methods for electron microscopy of human and other liver. World J Gastroenterol. 2010;16(23):2851.
  • Goldsmith CS, Miller SE. Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev. 2009;22(4):552–563.
  • Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiom. 2020;8(1):1–22.
  • Romano I, Ventorino V, Pepe O. Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front Plant Sci. 2020;11:6.
  • Wu CH, Bernard SM, Andersen GL, et al. Developing microbe–plant interactions for applications in plant‐growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotechnol. 2009;2(4):428–440.
  • Hannig C, Follo M, Hellwig E, et al. Visualization of adherent micro-organisms using different techniques. J Medical Microbiol. 2010;59(1):1–7.
  • Scott TM, Rose JB, Jenkins TM, et al. Microbial source tracking: current methodology and future directions. Appl Environ Microbiol. 2002;68(12):5796–5803.
  • Ali N, Rampazzo RD, Costa AD, et al. Current nucleic acid extraction methods and their implications to point-of-care diagnostics. BioMed Res Int. 2017;1–17.
  • Sirakov IN. Nucleic acid isolation and downstream applications. Nucleic Acids-From Basic Aspects to Laboratory Tools. 2016;1–26.
  • Collins ML, Zayati C, Detmer JJ, et al. Preparation and characterization of RNA standards for use in quantitative branched DNA hybridization assays. Analyt Biochem. 1995;226(1):120–129.
  • Olson ND, Morrow JB. DNA extract characterization process for microbial detection methods development and validation. BMC Res Note. 2012;5(1):1–4.
  • Hafner M, Katsantoni M, Köster T, et al. CLIP and complementary methods. Nat Rev Met Primers. 2021;1(1):1–23.
  • Wintzingerode F, Göbel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev. 1997;21(3):213–229.
  • Li Q, Luan G, Guo Q, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res. 2002;30(2):e5.
  • Pagano JM, Clingman CC, Ryder SP. Quantitative approaches to monitor protein–nucleic acid interactions using fluorescent probes. Rna. 2011;17(1):14–20.
  • Volpi EV, Bridger JM. FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques. 2008;45(4):385–409.
  • Ratan ZA, Zaman SB, Mehta V, et al. Application of fluorescence in situ hybridization (FISH) technique for the detection of genetic aberration in medical science. Cureus. 2017;9(6):e1325.
  • Ramette A, Tiedje JM. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceed National Acad Sci. 2007;104(8):2761–2766.
  • Gabor EM, de Vries Ej, Janssen DB. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol. 2003;44(2):153–163.
  • Huber D, von Voithenberg Lv, Kaigala GV. Fluorescence in situ hybridization (FISH): history, limitations and what to expect from micro-scale FISH? Micro Nano Engineer. 2018;1:15–24.
  • Wang T, Chen C, Larcher LM, et al. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37(1):28–50.
  • Garibyan L, Avashia N. Research techniques made simple: polymerase chain reaction (PCR). J Investigat Dermatol. 2013;133(3):e6.
  • Mirmajlessi SM, Destefanis M, Gottsberger RA, et al. PCR-based specific techniques used for detecting the most important pathogens on strawberry: a systematic review. Systemat Rev. 2015;4(1):1–11.
  • Chen L, Cai Y, Zhou G, et al. Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens. PloS one. 2014;9(2):e88886.
  • Barghouthi SA. A universal method for the identification of bacteria based on general PCR primers. Indian J Microbiol. 2011;51:430–444.
  • Giglio S, Monis PT, Saint CP. Demonstration of preferential binding of SYBR green I to specific DNA fragments in real‐time multiplex PCR. Nucleic Acid Res. 2003;31(22):e136.
  • Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006;19(1):165–256.
  • Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol. 2017;8:108.
  • Overbergh L, Giulietti A, Valckx D, et al. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J Biomol Tech. 2003;14(1):33.
  • Del Mar Lleò M, Pierobon S, Tafi MC, et al. mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl Environ Microbiol. 2000;66(10):4564–4567.
  • Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4(6):337–348.
  • Sharkey FH, Banat IM, Marchant R. Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol. 2004;70(7):3795–3806.
  • Khan S, Ullah MW, Siddique R, et al. Role of recombinant DNA technology to improve life. Int J Genom. 2016;1–15.
  • Rasmussen HB. Restriction fragment length polymorphism analysis of PCR-amplified fragments (PCR-RFLP) and gel electrophoresis-valuable tool for genotyping and genetic fingerprinting. Techopen. 2012;1–22.
  • Johnston‐Monje D, Lopez Mejia J. Botanical microbiomes on the cheap: inexpensive molecular fingerprinting methods to study plant‐associated communities of bacteria and fungi. Appl Plant Sci. 2020;8(4):e11334.
  • Osborn AM, Moore ER, Timmis KN. An evaluation of terminal‐restriction fragment length polymorphism (T‐RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol. 2000;2(1):39–50.
  • DeAngelis KM, Wu CH, Beller HR, et al. PCR amplification-independent methods for detection of microbial communities by the high-density microarray phyloChip. Appl Environ Microbiol. 2011;77(18):6313–6322.
  • Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2012;489(7415):250–256.
  • Al‐Mailem DM, Kansour MK, Radwan SS. Capabilities and limitations of DGGE for the analysis of hydrocarbonoclastic prokaryotic communities directly in environmental samples. Microbiol Open. 2017;6(5):e00495.
  • Urashima Y, Sonoda T, Fujita Y, et al. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping. Microbe Environ. 2009;27:43–48.
  • Douterelo I, Boxall JB, Deines P, et al. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014;65:134–156.
  • Rastogi G, Sani RK.2011. Molecular tTechniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment. In Ahmad, I., Ahmad, F., Pichtel, J. (eds). Microbes and Microbial Technology. New York NY: Springer. p. 29–57.
  • Das S, Dash HR, Mangwani N, et al. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Methods. 2014;103:80–100.
  • Schabereiter‐Gurtner C, Saiz‐Jimenez C, Piñar G, et al. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in tito bustillo cave, Spain, and on its palaeolithic paintings. Environ Microbiol. 2002;4(7):392–400.
  • Dı́ez B, Pedrós-Alió C, Marsh TL, et al. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol. 2001;67(7):2942–2951.
  • Muyzer G, De Waal EC, Uitterlinden A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59(3):695–700.
  • Morales SE, Cosart TF, Johnson JV, et al. Extensive phylogenetic analysis of a soil bacterial community illustrates extreme taxon evenness and the effects of amplicon length, degree of coverage, and DNA fractionation on classification and ecological parameters. Appl Environ Microbiol. 2009;75(3):668–675.
  • Schloter M, Nannipieri P, Sørensen SJ, et al. Microbial indicators for soil quality. Biol Fertil Soil. 2018;54(1):1–10.
  • Hoekstra HE, Coyne JA. The locus of evolution: evo devo and the genetics of adaptation. Evol Int J Organic Evol. 2007;61(5):995–1016.
  • Goldfarb KC, Karaoz U, Hanson CA, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2011;2:94.
  • Tan B, Ng CM, Nshimyimana JP, et al. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front Microbiol. 2015;6:1027.
  • Priemé A, Braker G, Tiedje JM. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Appl Environ Microbiol. 2002;68(4):1893–1900.
  • Braker G, Zhou J, Wu L, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl Environ Microbiol. 2000;66(5):2096–2104.
  • Raman R. The impact of Genetically Modified (GM) crops in modern agriculture: a review. GM Crops Food. 2017;8(4):195–208.
  • Frapolli M, Moënne-Loccoz Y, Meyer J, et al. A new DGGE protocol targeting 2, 4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. FEMS Microbiol Ecol. 2008;64(3):468–481.
  • Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.
  • Lu F, Jiang H, Ding J, et al. cDNA sequences reveal considerable gene prediction inaccuracy in the Plasmodium falciparum genome. BMC Genomics. 2007;8(1):1.
  • Smalla K, Jechalke S, Top EM. Plasmid detection, characterization, and ecology. Microbiol Spectr. 2015;3(1):3–21.
  • Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol. 2015;6:242.
  • Blainey PC. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev. 2013;37:407–427.
  • Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion: a review. Annal Microbiol. 2010;60(4):579–598.
  • Trevino V, Falciani F, Barrera-Saldaña HA. DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med. 2007;13(9):527–541.
  • Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013;101:1–22.
  • Lucito R, Healy J, Alexander J, et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003;13(10):2291–2305.
  • Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev. 2009;22(4):611–633.
  • Thomsen PF, Willerslev E. Environmental DNA–an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv. 2015;183:4–18.
  • Li Q, Birkbak NJ, Gyorffy B, et al. Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics. 2011;12(1):1–7.
  • Koltai H, Weingarten-Baror C. Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acid Res. 2008;36(7):2395–2405.
  • Butte A. The use and analysis of microarray data. Nat Rev Drug Discov. 2002;1:951–960.
  • Tu Q, Yu H, He Z, et al. GeoChip 4: a functional gene‐array‐based high‐throughput environmental technology for microbial community analysis. Mol Ecol Resour. 2014;14(5):914–928.
  • Xie J, He Z, Liu X, et al. GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl Environ Microbiol. 2011;77(3):991–999.
  • Zhang Y, Lu Z, Liu S, et al. Geochip-based analysis of microbial communities in alpine meadow soils in the qinghai-tibetan plateau. BMC Microbiol. 2013;13(1):1–9.
  • Escobar-Zepeda A, Vera-Ponce de Leon A, Sanchez-Flores A. The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet. 2015;6:348.
  • Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363–365.
  • Van Nieuwerburgh F, Thompson RC, Ledesma J, et al. Illumina mate-paired DNA sequencing-library preparation using Cre-Lox recombination. Nucleic Acid Res. 2012;40(3):e24.
  • Van Elsas JD, Boersma FG. A review of molecular methods to study the microbiota of soil and the mycosphere. European J Soil Biol. 2011;47(2):77–87.
  • Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: overviews and challenges. Biotechniques. 2014;56(2):61–77.
  • Martin-Laurent F, Philippot L, Hallet S, et al. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol. 2001;67(5):2354–2359.
  • Bashir A, Klammer AA, Robins WP, et al. A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol. 2012;30(7):701–707.
  • Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Molecul Cell. 2015;58(4):586–597.
  • Marchev AS, Vasileva LV, Amirova KM, et al. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci. 2021;78:6487–6503.
  • Razzaq A, Sadia B, Raza A, et al. Metabolomics: a way forward for crop improvement. Metabolites. 2019;9(12):303.
  • Salem MA, Perez de Souza L, Serag A, et al. Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites. 2020;10(1):37.
  • Lucaciu R, Pelikan C, Gerner S, et al. A bioinformatics guide to plant microbiome analysis. Front Plant Sci. 2019;10:1313.
  • Emwas AH, Roy R, McKay RT, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9(7):123.
  • Xiao JF, Zhou B, Ressom HW. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Anal Chem. 2012;32:1–14.
  • Scalbert A, Brennan L, Fiehn O, et al. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 2009;5(4):435–458.
  • Dona Anthony C, Michael K, Flora S, et al. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J. 2016;14:135–153.
  • Vladimir V, Schriemer David C. Supporting metabolomics with adaptable software: design architectures for the end-user. Curr Opin Biotechnol. 2017;43:110–117.
  • Martin M, Legat B, Leenders J, et al. PepsNMR for 1H NMR metabolomic data pre-processing. Anal Chim Acta. 2018;1019:1–13.
  • Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3(3):211–221.
  • Emwas AH, Roy R, McKay RT, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9(7):123.
  • Reck M, Tomasch J, Deng Z, et al. Stool metatranscriptomics: a technical guideline for mRNA stabilisation and isolation. BMC Genomics. 2015;16:494.
  • Song L, Sabunciyan S, Yang G, et al. A multi-sample approach increases the accuracy of transcript assembly. Nat Commun. 2019;10(1):5000.
  • Hettich RL, Pan C, Chourey K, et al. Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem. 2013;85(9):4203–4214.
  • Wang DZ, Kong LF, Li YY, et al. Environmental microbial community proteomics: status, challenges and perspectives. Int J Mol Sci. 2016;17(8):1275.
  • Benndorf D, Reichl U. Proteomics in environmental and technical microbiology. Eng Life Sci. 2014;14(1):27–46.
  • Lambais MR, Barrera SE, Santos EC, et al. Phyllosphere metaproteomics of trees from the Brazilian Atlantic forest show high levels of functional redundancy. Microb Ecol. 2017;73(1):123–134.
  • Levy A, Conway JM, Dangl JL, et al. Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe. 2018;24(4):475–485.
  • Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14(6):1-10.
  • Maron PA, Ranjard L, Mougel C, et al. Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol. 2007;53(3):486–493.
  • Kleiner M. Metaproteomics: much more than measuring gene expression in microbial communities. mSystems. 2019;4(3):e00115–19.
  • Blakeley-Ruiz JA, Kleiner M. Considerations for constructing a protein sequence database for metaproteomics. Comput Struct Biotechnol J. 2022;20:937–952.
  • Timmins-Schiffman E, May DH, Mikan M, et al. Critical decisions in metaproteomics: achieving high confidence protein annotations in a sea of unknowns. ISME J. 2017;11(2):309–314.
  • Bastida F, Hernández T, García C. Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J Proteomics. 2014;101:31–42.
  • Hettich RL, Pan C, Chourey K, et al. Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem. 2013;85(9):4203–4214.
  • Gavrilaș S, Ursachi CȘ, Perța-Crișan S, et al. recent trends in biosensors for environmental quality monitoring. Sensors. 2022;22(4):1513. (Basel, Switzerland).
  • Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Anal Chem. 2017;97:445–457.
  • Mohajerani A, Burnett L, Smith JV, et al. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials (Basel). 2019;12(19):3052.
  • Liu L, Song B, Ma J, et al. Bioinformatics approaches for deciphering the epitranscriptome: recent progress and emerging topics. Comput Struct Biotechnol J. 2020;18:1587–1604.
  • Boon E, Meehan CJ, Whidden C, et al. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev. 2014;38(1):90–118.
  • Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):1–5.
  • Bisanz JE, Soto-Perez P, Noecker C, et al. A genomic toolkit for the mechanistic dissection of intractable human gut bacteria. Cell Host Microb. 2020;27(6):1001–1013.
  • Thomas T, Gilbert J, Meyer F. Metagenomics-a guide from sampling to data analysis. Microb Inform Exp. 2012;2(1):1–2.
  • Pinu FR, Villas-Boas SG, Aggio R. Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabol. 2017;7(4):53.
  • Hartmann M, Frey B, Mayer J, et al. Distinct soil microbial diversity under long-term organic and conventional farming. Isme J. 2015;9(5):1177–1194.
  • Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533(7602):255–259.
  • Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. Briefing Bioinform. 2021;22:178–193.
  • Buermans HPJ, Den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophysica Acta. 2014;1842:1932–1941.